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11.      CROSS-SECTIONAL MODELS 

1.     Introduction. 

The  general  flow model  discussed   in Report No.   I  of  this   series  is 

useful  for  demonstrating  the  basic  concepts of  flow conservation and 

equilibrium.     However,   it  has  very little  structure  and  as  a   result  has a 

very  large number  of  variables   (the  flows     f..(t)).     Without   additional 

constraints   it admits many unrealistic   flow patterns. 

In   this  report we  present   some models which essentially describe 

how a manpower  system changes   from one  set  of  stock  levels   {s.(t)]     at 

an   accounting  point     t     to another  set     {s.(t+l)t     at   the point     t + 1. 

The  common   feature of  all   these models   is   that  knowledge    of  historic 

personnel  movement  prior  to     t     is not   required by *'he model.     The only 

data  requirements will be  the   cross-sectional  structure of  the  system at 

a  given   time;   hence   the name  "cross-sectional models."    A strong point   in 

favor  of   such models   is  that  most  organizations  keep  current   files  on 

personnel   such  that  determining   the  structure of   the  organization at   say 

month-end,   or  year  end,   is  easy.      In  almost  all  cases with which  the 

authors  are  familiar,   the  information  system in an organization does  not 

allow  for  easv  tracking of historical data over  time. 

Section  '  ^resents  the basic   fractional  flow assumptions.     Sections 3-7 

develop   the   theory and   properties  of  cross-sectional models,   and  section 8 

presents  an  application   to University Faculty Planning.     Section  9  gives'a 

probabil.'stic  interpretation of   the  fractional   flow assumptions,   and  sections 

10  and  .11  give applications  using     these  probabilistic   interpretations;   section 

10  presents  a university  faculty  retirement  system,   and  section  11  some models 



for student enrollment forecasting.  Sections 12-14 discuss more advanced 

theoretical concepts, and the report ends with notes and comments in 

section 15. 



2.     Fractional  Flow Assumptions. 

In   the   fractional  flow model we  assume   that   the  fraction of  the 

stock  in   class     i    at   time   (t-1)   that   flows  to  cla^s    j     at   time     t 

is  a  fixed  number     q..,     independent   of     t     and     s.(t-l).     Thus 
]i r i 

(1) f..(t)   =  q..s.(t-l) 

for  all    t     and  for     1 =  1,2,...,N 

j   = 0,1,2,...,N. 

This  assumption  is  often difficult   to   justify and  is  only an  approxi- 

mation  in  a  great  many cases.     The user will have to balance  the  shortcomings 

of  the  assumption  against   the simplicity and   utility of  the  resulting model 

for any  specific  application.     In  the   examples we  present   in  this  chapter, 

we  shall  discuss  the validity and shortcomings of  the fractional  flow 

assumption. 

The   flows  and   stocks are nonnegative,   thus     q..   -' 0.     Also,   if  we 

sum   (1)   over   the  index    j    WP obtain   from       (1.1) 

N N 

s.(t-i) = y f,.(t) = y q..s.(t-i), 
i        .z-n ij       .'■,. ■■I i 

j=o  -J    :=o - 
N 

which implies I     q,. = 1.  The fractions  q. .  partition the stock of 
j=0 -^ Ji 

manpower in class  i  into fractions that flow into each class j . 

From the other basic conservation relation (1.1) and (1) above we obtain 

(2) S (t) = J  f  (t) ^  (t)+ l     q  S.Ct-l) 
1=0  J      J     1=1 ■J 

for j = 1,2,...,N. 

The notation (I.k) refers to equation (k) in report number I in this series, 



Let f0(t)  be the vector  [f.^Ct) ,£.. (t) ,.. . ,£„ (t) ] of new appointments 

during period  t.  Recall that s(t) = [s (t),s„(t) ,...,s (t)] .  Finally 

let Q be the N x N matrix [q..]  for j  and  i between 1 and N. 

In matrix notation equation (2) becomes 

(2) s(t) = Qs(t-l) + f0(t). 

In this chapter we shall treat the N-vectors s(t) and fn(t)  as 

(Nxl) matrices which are commonly called column vectors. To avoid 

possible confusion we shall write out important sets of equations explicitly. 

Equation (2) is the basic fractional flow model. Given the stocks 

at time t-1,  the new appointments in period t and the matrix Q it 

is possible to predict the stocks at time  t.  The model is cross sectional 

since it uses the cross section data s(t-l)  and is independent of all 

stocks and flows prior to time t-1. The first term on the right hand 

side of (2), namely Qs(t-l), is the legacy left over from appointments 

made in periods before t. The second term,  fn(t), is the vector of 

new appointments in t.  The sections that follow treat variations of the 

basic model (2) and present some interesting applications of (2) in a 

variety of contexts. 



3.     FracUional  Appointmentis with Hindsight. 

Let  us  define    SACO     
as  t^6  number   of  vacant   positions at   time     t. 

and 

N 
(3) A(t)   =     I    s.(t) 

j=0    3 

as   the  total  number of   positions   in  the  system.     We write    s(t)     for the 

N-vector     [s   (t),s   (t) ,. .,,s  (t)]     and     s*(t)     for the    (N + l)-vector 

[s   (t),s(t)];     the  sum1     es(t)  =  X(t)   -  sn(t)     is the number of  individuals 

filling jobs within the organization at  time    t. 

In  this  section we present  an  appointment  policy which allows  one 

or more accounting  points  to pass  before  a  vacancy  is  filled.     The next 

section presents  an appointment  policy that  anticipates future vacancies. 

We  can distinguish  the vacancies at   time     t    by  their source,   si"ce 

rN 
sn(t) =  } .   r,  f.^Ct).  First, let  fn^Cf)  be the number of vacancies at 
U     ^1=0  IO ÜÜ 

time  t-1  that are not filled during period  t.  The other flows are 

given by (1);thus 

(4) S0(t) =f00(t) + I     q0is.(t-l). 
1=1 

".'he lagged fractional appointment policy is determined by a scalar 

a  and an  N vector  a = [a ,a ,...,a ].  For  j = 1,2,...,N,  we let 

a.  be the fraction of vacancies  sn(t-l)  observed at time  (t-1)  that 

are filled by appointing individuals in class  j.  We say that  a  is 

The vector e  is a row vector of appropriate length with each element equal 
to 1, which is used to sum the elements of a given vector.  Thus es(t) = 
V* ,   s.(t). 



the  fraction  of   the  vacancies   that  remain  open during period     t.     The 

numbers    a.     j  = 0,1,2,...,N    are independent of     t    and     sn(t),   are 

nonnegative,   and  sum  to  one. 

From this definition we  ses  chat the appointments,   or input  flows, 

are given by 

f0j(t)  =  a s0(t-l)      j  = 0,1,2,...,N. 

Now for i = 1,2,...,N we define w. = q„. as the fraction of those in 

class j at time (t-1) who withdraw from the system during period t. 

Finally let P* be the  (N+l) x (N+l) matrix 

(5) p* = 

'0 
w 

where Q is the N x N matrix in (2). 

P* is a stochastic matrix; each element is nonnegative and the 

column sums are equal to one.  The status of the manpower system at time 

t  is given by the N + l vector s*(t) = [s (t),s(t)]  where s(t) = 

[s,(t),s„(t), . . . ,s (t) ] .  From our definitions the lagged constant size 

model is 

(6) s*(t) = P*s*(t-1) 

Example 1:     Consider  the example of university faculty with    N = 3 classes, 

1  - nontenured,   2  -  tenured,   3 - retired.     Let  the  time  period be one year 

and assume  that  in  one  period   25% of  the nontenured   faculty   become tenured, 

25%  stay nontenured  and  the remainder leave.     Assume that  80% of  the tenured 

faculty stay  tenured,   10%  leave,  and 10% retire.     Assume that  80% of the 



retired remain retired and 20% die (leave the system) ,  Let us assume that 

all new hirings are into ;he non-tenured ranks.  Then 

0 .5 .1 .2 

] .25 0 0 

0 .25 .8 0 

0 0 .1 .8 

PÄ = 

L 

Problem I .  Find the stock levels after one year if the current levels are: 

(a)       (b) 

vacancies 800 828 

nontenured 1000 1103 

tenured 2000 1379 

retired 200 690 

Total Positions 4000 4000 

Notice that  s'v(t)  sums to A (t)  for all  t.  since 

A(t)   = es*(t)   = eP*s*(t-l)   =  es*(t-l)   = A(t-l) 

s*(t) s   (t J Thus  the  system   remains of   constant  size and   the    N + 1     vector    —-—r- 

is nonnegative  and sums  to  one.     The notation and  form of (6)    suggests 

an analogy  to Markov chain  theory.     Indeed    (2)       an^. (6)    are sometimes 

called Markov models.     It  is  both desirable and  natural   that results  of 

Markov chain  theory be  used wb.-rever applicable,   but   the  reader should 

koep  in mind   that  we are discussing a deterministic  model  and we carefully 

avoid reference   to   probabilities.    As we  sha"11 mention later,   too deep an 

analogy  to   the  stochastic behavior of Markov chains  can be quite misleading 



4.     Fractional Appointments with Forssight■ 

It  Is possible  to construct a fractional  appointment  policy 

which anticipates   the vacancies  that will  occur  in  period     t,     and which 

hires  enough replacements   to  fill  the vacated  positions.     With  this policy 

s0(t)  = 0    for all     t. 

v-N 
If    s(t-l)     is  the manpower  stock at  time    t  -  1,     then    [.   ,  w.s.(t-l) 

vacancies will be  created   in period     t.     Of all  these vacancies  a  fraction 

a.     will be  filled by appointing new .!nc i\ icuals  into class    j.     There are 

no vacancies left  unfilled,   thus    a_  = 0    and     ).   n   a.   =  1.     The flow of 

new appointments in class    j     in period    t     is    thus 

N 
(7) fn-^t)    =   a-       I      W.S.(t-l) 

Oj 1  iti    1 :L 

and  using 

N 
(8) s.(t)   =    J     (q..+a.w.)s.(t-l) 

for    j   =  1,2,...,N. 

In matrix notation, let a^w be the N * N matrix with elements 

a.w.. This is the same as a matrix product if a is considered as a 
J i 

(N*!) matrix (commonly called a column vector) and w is a (IxN) Matrix 

(a row vector).  With this convention let P - Q + a-w .  Then 

(9) s(t) = Ps(t-l) . 



Notice  that     P    is  a stochastic matrix  (all  its  columns  sum to 1).    First, 

since    w     and    a    are nonnegative,    P..=q..+a.w.  ^0.     In addition 

IN IN IN 

.\      PJi=      .\      ^i^i      .\      ^     =1^ J=l J J=l        J J=l J 

7N -N 
since  ;. , a. =1  and  w_ = q., = 1 - ) , n q...  Thus (9) has the same L2=l     j i   H)i      L2=l  Hji 

mathematical structure as  (6).   However, we have one less equation, a 

different type of hiring policy, and a stochastic matrix in which the 

effects of changes in a.  or w. are not readily apparent. 

Example 2:  (Continue Example 1). Suppose we use the same fractional 

hiring policy a, but that we anticipate vacancies.  The P matrix 

derived from the P*  matrix in Example 1 is 

.75 .1 .2 

.25 .8 0 

0 .1 .8 

P = 

Since state  0  (outside the system) dies not explicitly appear in this 

model it appears that certain flows take place which are not natural. 

For example 20% of those in reticemput appear to return to the non-tenured 

ranks.  This flow is of course due LO new hiring. 

Problem 2: Find the stock levels after one year if the current levels 

are; 

(a) (b) 

nontenured 1800 1391 

tenured 2000 1739 

retired 200 870 

Total Positions 4000 4000 
G 
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5.  Analysis of Fractional Appointment Policies. 

Both the hindsight model  (6)  and the foresight model  (9)  lead 

to algehraic equations similar to the transition equations of a finite slate 

Markov chain.  This section will examine how the results of regular Markov 

chain theory  (Kemeny and Snell Chapter  IV)  can be used in our model.  We 

shall concentrate on the foresight model  (9)   the results and algebra are. 

identical for the hindsight model (6). 

The reader who pursues parts|blof problems 1 and 2 will notice the 

interesting fact that an equilibrium has been reached.  For some value 

of  s(0) we obtain s(l) = s(0)  and therefore,  s(t) = s(0)  for all t. 

This equilibrium can be explained using Markov chain theory. 

If s(0)  gives the initial stock levels then 

s(l) = Ps(0), 

s(2) = Ps(l) = P(Ps(0)) = P2s(0), 

and in general 

(in) s(t) = ptsCO). 

Under reasonable assumptions on the matrix P equation(lO) has an 

interesting structure for large  t.  We do not wish to go into the technical 

details of these assumptions since they involve concepts used in Markov 

chain theory and have little pertinence to our manpower flow models.  In 

all the examples discussed in this book the assumptions hold.  They lead 

t 
to the fact that for some  t  large enough P  has all positive elements, 

and that 

(11) P-^-Vast-»-00,  where 
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(i)  every column of the matrix V  is the same, say  [v , v., 

and thus 

•'V' 

v = 

n 
'i   ••■   vi 

(ii)  tlie vector v = [v.. ,v„,.. .v ] satisfies 

v = Pv 

ev = 1 

v^ ^ 0 for every  i = 1,2 N. 

For large t  we have, by (10),that  s(t) ~ Vs(0).  From (ii) we see that 

Vs(ü) = (vn,v„,...vM)A(0), where A(0)  is the system size at time zero. 

If the numbers (v ,...,v )  could be determined, they would tell us what 
lil 

the distribution of people among classes would be after some time periods 

had elapsed.  Although this is a limiting result as t ->■ •» the distribu- 

tion v  is often obtained approximately in only a few time periods. 

Example 3:  Using the distribution of people in part (a) of Problem 1 as 

s*(0),  and using  P*  from example 1 the stock levels at various times 

t are: 

Time 0 8 

Vacancies 800 740 782 791 814 828 

Nontenured 1000 1050 1003 1028 1075 1103 

Tenured 2000 1850 17A2 1574 1422 1379 

Retired 200 360 473 607 689 690 

Problem 3:  Perform the calculations in Example 3 using part (a) of 

Problem 2 as  s(0)  and  P  from Example 2. 
a 
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The reader who  solves Problem 3 will  realize how tedious  the 

calculation of     s(t)     is  using     (10),   especially  for     t     quite  large.     If 

we   let     s    be  the  limiting vector  of     s(t)     as    t     becomes  large,   then 

by  using   (11)   it  must  be   that     s     satisfies 

(12) s = Ps. 

If  A  is the total system size, then 

(13) 

j=l 

Equations   (12)   and   (13)   comprise     (N+l)     equations  in   the    N     unknown 

stock  levels    s.     It   is  easy  to  show that  the equations  in   (12)     are 

linearly dependent.     Let     e    be a  vector with all  elements  equal  to  one 

(recall  that whenever we use     e    we  shall assume  its  dimension   is compatible 

in  the equation  in which  it   appears).     Then   (12)   and   (13)   can  be written as 

(14) (I-P)£-  = 0 

es  = A 

If one of the first  N equations is ignored, the remaining N  can be 

solved uniquely for the steady-state stocks  s.  If we drop the first 

equation in (1A) we obtain  N equations in N unknowns. 

(1.5) 

J2\ 

31 

Nl 

1 

(1-P22) 

P32 

- p 
N2 

1 

(I-P33) 

2N 

P3W 

(1
-PNN

) 

{  si 1 0 - 

0 

0 

^ A 
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Equation (15) shows how the steady state vectoi of stocks depends 

en the appointment policy. 

Problem 4: Write down the equivalent of equation (15) for the hindsight 

model (6). 

Problem 5:  Continuation of Problem 3, with  > = 4000, find the steady 

state stock levels. 

Problem 6: Contrast the difficulty involved in recalculating steady state 

stock levels in both the hindsight and foresight models when:  (i)  the 

size X  is changed, (ii)  the appointment policy is changed. _ 

The cross-sectional models discussed to this point assume a system 

of constant size.  If vacancies are considered as a separate state, equa- 

tion (6)  can be used for forecasting future stock levels in the time 

periods immediately ahead, given the current stock levels and the matrix 

P*.  If the long-run effects of a matrix P are required, then the analog 

of (15) should be used.  If vacancies are assumed to be filled quickly it 

may be more appropriate to use an N state model.  Short-range forecasts 

can be made with (9)  and long-range forecasts with (15) . 
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6.     Stationary Appointment Policies. 

Returning to equation    (2)     of  the basic fractional  flow model, 

the stock level in class    j     at     t    is given by 

N 
MO   =    I     q     s.Ct-l)   +  f     (t),        1=1,2,...^, 

J 1=-|_     J 

or in matrix form       s(t) = Qs(t-l) + f^(t)• 

Thus given an initial stock vector  s(0),  and rew input vectors 

f (1) ,^(2) ,. . . ,f (t) ,  the stock levels  s(l) ,y (2.) ,. . . ,s(t)  are easily 

calculated. 

In the previous section fn(t)  was chosen so that the total number 

of positions in the system remained constant.  In this section we consider 

a different form of ^(O  which allows for growth or decay of the system. 

a.  Geometric Growth. 

Let in(0)   -  f.  the input vector in period 0,  and let  0 be 

some positive number.  Now let the input vector in period  t  be 

0-6) f0(t) = ö^,   t ^ 0. 

If  9 > 1  the new input grows geometrically, if 8 < 1  it decays 

geometrically, and if 9=1  the input is constant in each time period. 

Substituting (16)into (2) gives 

s(t) = Qs(t-.L) + 9t:f,   t ^ 1. 

The question of interest here is, how do the stock levels behave over time 

for various values of 9? Given a starting stock level  s(0)  repeated 

application of this equation for increasing  t  gives 



and in general 

s(l) = Qs(0) + 9f, 

s(2) = Qs(l) + 62f) 

= Q2s(0) + qef + e2f, 

15 

(17) s(t) = QLs(0) + i I   o^^J 
^=0 

In order to investigate the behavior of the stock levels s(t) as 

t  increases it is necessary to rely on some of the results of linear 

algebra, and in particular some results from the theory of nonnegative 

matrices.  It is not our intent to reproduce this theory here, but rather 

to use it as it applies to our manpower problem, "he interested reader 

should consult the references at the end of the repoit  for details. 

Let us assume that it is possible to leave the system eventually 

from any class  i.  This is not to say that we must leave directly from 

i,  but only that if one is ever in a class i one can eventually leave 

by some route.  It is hard to imagine an organization where this is not 

true!  Define a matrix R as the matrix Q with each element divided by 

6,  and write R = Q/6.  Then the theory tells us that there is a number 

p greater than zero and less than 1 such that if 6  is greater than p 

the elements of the matrix R  each go to zero as t increases. We 

write this as 

(18) R -*- 0  as  t -*- oo,  where 

0  is an N x N matrix with all elements equal to zero.  Also when 6  is 

greater than  p  the inverse of  (I-R)  exists and is nonnegative, with 
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(I-R)-1 ~    I    R1. 
t=0 

This matrix plays an important role in our models, and ue denote 

it by 

D(e) = (i-R)'1. 

In particular, for 9 = 1 W3 have D(l) = D = (1-Q)~ . 

Returning nov   to our problem of investigating the behavior of  s(t) 

divide (17)by 6   and substitute  R for Q/0.  Then 

(19) ^- = R^CO) + 
t-1  . 

'2=0      > 
f. 

It can be shown that J,'._n R = (I-R )D(e)  when 9 > p. Using this in 

equation (15) gives 

(20) ^1 = D(Q)f + Rt[s(0) - D(9)f], 

This equation for the stock levels at time  t  is in a form which 

is very useful in determining the behavior of s(t)  as t increases. 

Its behavior will depend on the magnitude of 9  and we consider various 

cases. 

The first case considered is when 6  is greater than 1.  In this 

case ^(t)  increases geometrically without bounds so that the organiza- 

tion keeps growing.  The first term on the right hand side of (20) is 

constant whereas the second term varies as  R .  But if 0 > 1  then 

9 > p  since p < 1;  thus R ->• 0  as  t-"-00.  It follows that 

^-->D(6)f, 
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and that for large  t we can approximate the stock levels by 

(21) s(t) X 6 D(e)f. 

This is a simple result from which stock levels can be easily calculated. 

However, the main purpose of this analysis is not to determine simple 

methods of computation, but rather to derive simple expressions which 

give insight into how the system stock levels grow relative to each other 

as the input grows.  Equation (21) tells us that the fractions in each 

class  i  stay the same eventually, and thus if s(t-l)  gives the stock 

levels at  t - 1  then es(t-l)  gives them at  t.  Each stock level is 

increased by the multiplier  6  and therefore, the distribution of total 

personnel  among the classes stays the same. 

Example 4:  Consider a system with 2 classes with 

Q = 

.4   .1 

.3  .7 
1.05,  f = [100,0] , 

This Q assumes 40% of those in class 1 remain in 1 in a time period, 

30% move to 2, and 30% leave the system.  Of those in class 2  10% move 

to class 1,  70% remain in class 2 and 20% leave the system.  The system 

starts with an input of 100 into class 1 and none into class 2, and input 

grows at a rate of 5% per year. 

The matrix R is given by 

R = 
.381 

,286 

,095 

.667 

and 



D(1.05) 
1.86  .532 

1.59  3.46 

Thus  D(9)f  is  [186,159],  and for large  t we can write 

s(t) K  [.539,.^61]345(1.05) 

This equation can be used to determine  s(t)  for large  t. 

However, a., important use is that it tells us that eventually the system 

has about 54% of its people in class 1 and 46% of its people in class 2, 

and these proportions stay constant even though the total number in ehe 

system is growing geometrically. 

Figure II.1 illustrates this example and the use of the analysis 

leading to equation (L>0). The axes represent the numbers in each class 

and the vectors  s(l), s(2),  etc. are plotted starting with  s(0) = [O.IOCT 

They approach a line drawn through the point  (539,461)  and through the 

origin.  Equation (20) tells us that  s(t)  eventually approaches this 

line, independent of the value of  s(0). 

Problem 7:  Using Q,  9 and  f of the example, plot s(t)  starting 

with s(0) = [200,0]. 

Returning to the analysis of equation (20) we now consider the case 

6=1.  Thus the input in period  t,  f(t)  is simply f  for all  t. 

Note that  R = Q,  R -> 0 since p < 1,  and the stock levels stay bounded 

and approach the vector  s = Df,  independent of the starting stocks  s(0). 

Example 5:  (continuation of example 4).  For this example the system 

stocks approach 200 in class 1 and 200 in class 2 for a total system size 

of 400.  The values of  s(t)  are plotted in Figure II.2 starting with 

s(0) = [0,100]. 
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Problem 8:  Calculate  s(l),s(2),...  for Che case  s(0) = [200,0]  and 

plot on figure II.2. LI 

The third case to consider in equation (20)is when p < 6 < 1. 

In this case the new input each year decreases geometrically at a rate 

slower than p.  In this case R  still converges to a zero matrix and 

for large t  s(t)  is given by (21). Thus  s( t)  eventually goes to 

zero, but geometrically at a rate 6  and with the stocks in the same 

proportL 'S as given by D(9)f.  The reader is cautioned that R varies 

as 9 varies, so that decreasing the value of 6  from a number above 

1 to one between p  and  1 will change the proportions of the stocks in 

each c'.ass in steady state. 

Example 6:  (continuation of example 4).  It can be shown that p  for 

Q  in example 1 is .779.  Using a 0  of 0.9 we find 

,444   .111 

.333  .778 

D(.9) = 
2.57  1.29 

3.86  6.42 

D(0)f = [257,386] = 643[.4,.6: 

After 20 periods the stock levels are given approximately by  [31,44] 

which are in the ratio  4  to 6.  Figure II.3 shows the plot of s(t) 

starting with s(0) = [0,100].  Notice that the stocks are going to zero 

along the line through the origin and the point  (40,60). 

Problem 9:  Calculate  s(l) ,s(2),...  for example 6 starting with 

s(0) = [200,0]  and plot on figureJi, 3. 
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The  fourLh  and  final case  to consider  in  equation  (20)is when 

8  ^ p.     For example,   suppose there  is no new input  each year and  the system 

is  simply allowed   to  die out on   its  own.     In   this   case    9    would  be zero. 

The case of  firemen  on the railroads might  be an  example.     No new ones 

are  added  to  the  system but  the number  in  the  system decreases  through 

natural attrition.     It  should be clear  that  if     0     is  too small  the 

system cannot  shrink at  the rate    9     (the  example    9=0    illustrates  this). 

The value    p     is   important  here,   since if     0   <  p     it is    p     which deter- 

mines  the rate at which the organization shrinks.     The mathematics referred 

to  earlier support   this.     If    0  i p     then     (I-R) does not  exist and 

equations (20) and (21) have no meaning.     The number    p     is a  lower bound 

on  the rate of  contraction.    This  is because  attrition or withdrawal from 

the  system depends  only on  the   coefficients     q..     and    w.     (recall 

w.   = 1 - V.   .,   q..)     and is  independent of   the appointment  rate, 
i ^3=1     Ji 

Returning   for  a moment   to  the  theory  of  nonnegative matrices we 

use the following  result.     One  can find an    N-dimensional vector which we 

call    s    whose  elements are nonnegative and  add   to  one,  and which  satisfies 

ps  = Qs, 

Suppose   this     s    is  used  as  the initial  stock vector     s(0)      (the 

fact   that   its   elements  add  to  one  is  a convenience  and  is not necessary), 

and we have no  new  input so  that     ^/-.(t)   =  0     for  all     t ^ 1.     Then from 

(2) 

and  from our  choice  of    s 

s(t)  = Q^ 

s(t)   = p  s. 
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Summing the elements on each side of the equation gives 

es(t) = p , 

so if the system starts at time 0 with n people, after t periods it 

will have np  people.  This shows that p  determines the speed at which 

the system dies out.  For if we take 0 positive but less than p,  then 

for Ic^rge enough t  0  will be very small compared to  p  and any nev/ 

input will have a negligible effect on the size of the system relative to 

what is left in the system after natural attrition. 

Example 7:  (continuation of example 4).  For this example p = .779, 

and the vector s is found to be  [.21,.79]. Thus if the systei.i starts 

with 100 people, 21 in class 1 and 79 in class 2, and if no new input is 

added than s(t) = (.779) [21,79].  If the system starts with  s(0) = 

[0,100] and f = [100,0],  3 = .5, the values of  s(l) ,s (2) ,.,. are 

plotted in Figure II.4. The values are also plotted for the case of no 

input  (9=0). 

Problem 10:  Calculate  s(l) ,s(2) , ...  for example 7 starting with 

s(0) = [200,0]  and plot on Figure II.4. Repeat with  6 = 0. 

The case 9=0  is of interest if a system is to undergo a reduction 

in size.  Consider a cutback in a manpower system from a level of, say N.. 

people which has been maintained using a given constant appointment policy 

fj, to a lower level, say N ,  where this reduction must be brought about 

only by natural attrition.  Let us assume that the distribution between 

grades is to remain the same when the new level is reached.  One way to 

model such a change in structure is to assume that the vector of numbers 

N2 
to be enlisted in each future period its given by  f„ = — f, ,  and that a 
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N2 
vector rr- s of people and positions in the system have been singled out. 

1 
Since  es = N  by assumption, we have singled out N  positions.  Attri- 

tion from these will be filled by the appointment vector     and we assume 

the same Q matrix holds.  It is easy to show that this input vector 

maintains the steady state distribution but with N  people.  The remaining 
N1-N2 

people,  given by a vector    —  s,     are not  replaced as   they leave.     Thus 
1 

the behavior of  the system in  the  transition period  from  the level    N 

to  the  level N„     is described by  case 4 described above,     6=0,     applied 

to  a  steady state system containing     (N,-N,J     people. 

Such a splitting of  the  system into two groups  is   simply  a conven- 

ience which allows us  to use  the models developed  this  far.    No  actual 

splitting need occur  in  practice.     It  is  simply a convenient  trick which 

allows  us  to  investigate  the  transient behavior of  the system. 

Example 8:     (continuation of  example 5).     Assume we have  a  system with 

400 v^ople,     Q    matrix as  in  example 4 and in steady state with     f - 

[100,0],    The steady state stocks  are     [200,200]   (see Figure IL2).    Assume 

the  system is  to be reduced  to  a  total of  300, with 50% of   these  in each 

of   the  two  classes.    We  can  think of  a system of  300 which  continues  as 

before with a new input vector     [75,0]     in each period.     This will main- 

tain  the subsystem at     [150,150]     in each period.    The remaining  100 are 

taken  to be  another system,  with     f(t)   =0,     t ^ 0.     Figure II.   5  gives  the 

stocks  in each period and shows  how  the system approaches   its new steady 

state. 

b.     Arithmetic Growth. 

Let    f    and    g    be   two   N-vectors   (assumed nonnegative) .     In this 

section we assume  that  the input vector at    t     is given by 
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(22) f(t) = f + gt,   t ^ 0. 

When  f(t)  satisfies (22)we say we have arithmetic growth 

The stocks are given by 

s(l) = Qs(0) + f + g, 

s(2) = Qs(l) + f + 2g, 

= Q2s(0) + Qf + Qg + f + 2g, 

and in general 

t   t--i     t~l     ■ 
s{t)  =  QsCO) + I    jQ J g + I    Q-1 f 

j=0 j=0 

t   .    t   .    t-1  . 
(23) = Q^CO) + t  I QJg - [  jQJ g +  J] QJ f. 

j=0      j=0       j=0 

In order to investigate the long-run behavior of the system we need to 

know how each of the terms on the right-hand-side of (23) behaves. 

The first term vanisnc for large  t  since Q -* 0,  and the xast 

term converges to Df.  The third term must be investigated (which is 

done below), but as we shall see it remains finite.  The second term, 

however, increases linearly in  t  for large  ,.,  since if  t  is large 

the sum is approximately Dg. 

To return to the third term, this sum can be written (without 

multiplication by g) 
t 

I  JQJ =  Q 
j=0      + Q2 + Q2 

+ Q3 + Q3 + Q3 

+ . . 

' t    t t +Q +Q +...+Q, 
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t*—1        i t 
and  summing each column,   using     I-^n  Q    =   (^"Q  )D>     gives 

I    jQj = Q[(l-Qt)D - tQt+1]D. 

As     t    becomes large this   expression approaches     QD2,     Thus  from (23) we 

can  say 

limit   (r(t)-tDg)   = Df  - QD2g> 

t-x» 
or 

s(t)   ~D(tg+f-QDg). 

This  expression   tells  us  that   in   the  long run   the  number  in   the 

system increases linearly.     The number in a  given  state     i    will  be given 

by  the  i—   element   of the  vector     [f-Qdg]     plus     t     times  the    1— 

element   of  the vector    Dg.     Again   the   importance  of  the matrix    D  =   (1-Q) 

is  demonstrated. 

Problem  11:    Using  the    Q     and     s(0)     of problem  7,   let     f  =   [100,0]     and 

g  =   [10,10].     Find     Dg    and     f  -  QDg.     Plot   the  two  lines     y    =   (Dg) .t + 

(f-QDg).,     1=  1,2,     Determine     s(l) ,s(2),... ,s(20),     and   plot   each 

element  on the same  paper  as  the  lines. 

The  following problems  are more  advanced ones which demonstrate how 

geometric  prowth models can be  formulated as foresight or hindsight models. 

Problem  12:    When    6=1,     show     ef = wDf.     What   is  the  interpretation of 

this  formula?    Derive and  interpret  the formula  in  the general  case    9  > p. 

Problem 13:    Given    s(0),     6=1,     and  a fractional appointment  policy    a, 

determine     (ef),    the number  of  appointments per  period  so  that  in  the 

equilibrium system with stocks     s = Qs + (ef)a    we have     es =  es(0),     i.e., 
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the total in the system in steady state is equal to the current total 

in the system. 

Problem 14;  Given s*(0) = [s-CO),s(0)],  9=1, and a fractional appoint- 

ment policy a,  determine  (ef),  the number of appointments per period 

so that an equilibrium system with stocks s = Qs + (ef)a,  sn = ws,  has 

s0 + es = s0(0) + es(0). 

Problem 15:  Show that if 

P = Q + -'-r • [w + (e-l)e] 

and  s(t) - Ps(t-l), that 

(i)  eP = Be 

(ii)  es(t) = etes(0), 

(iii)   sM.MigMi    where   D = (I.Q/e)- 
6 

Interpret  the results. 

Problem 16:     Show that  if 

P* = ef 
ef 

[vH-(e-l)e] 

(i)  the columns of P* each add to 0, 

(ii)  (ef,Df) solves s* = 
'p*' 

s*, where D = (I-Q/e)' 

Interpret the result if s*(t) = P*s*(t-1) 



Problem 17:     Show that  if 
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P* 

"   (6-1) e[w+(0-l)e] 

Of 
ef 

Q 

then 

(ef,Df)   solves    s* = 

Interpret  the result  if    s*(t)   = P*s(t-1)  and contrast with problem 16. 

Problem 18:     It  is shown in problems  16 and 17  that  for  the  case of geometric 

growth an equivalent  hindsight model with  (N+l)  states can be  formulated. 

s*Ct) 
In both these cases    s*(t)  =  P*s(t-1),     and    ——^->■ k(ef ,Df) ,     for some 

9 
constant    k.     The stocks in any  finite  period    t    differ  in  the  two 

models.     Show that  in general  it   is not  possible to construct  a matrix    P* 

such that     s*(t)  = 6 s*(0)     for all    t, 
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7.  A Requirements Model. 

In this section the fractional flow model is used to determine 

the sequence of input vectors fnCO  which are needed to exactly meet a 

given sequence of required stock levels  s(t).  In previous sections the 

input flow vectors  f^CO  were assumed to be given and the behavior of 

the resulting stock vectors was analyzed.  Now we reverse the problem. 

Let the current time period have index zero, and assume stock vectors 

s(0),s(l) ,...,s(T) are given for some planning horizon T. The vectors 

fn(l),...,f (T)  are to be determined in order to meet these stock levels. 

From equation  (2)  we have fn(t) = s(t) - Qs(t-l),  t = l,2,...yT. 

Let us assume that the only feasible input vectors are those which are 

nonnegative.  That is to say, requirements can be met only with appoint- 

ments.  Forced attrition cannot be used. 

The first question to ask is, can the given sequence of stocks 

s(l),...,s(T)  be met with any feasible set of appointments i (1) ,. ..,f (T)? 

The answer is yes if and only if s(t) ^ Qs(t-l)  for each t = 1,...,T. 

There are T x N  inequalities which are simple to check. Suppose our 

requirements are changing geometrically, so that s(t) = 6 s(0), 6 > 0. 

Then it is easy to see that only the N  inequalities 

(24) s(0) ;> ^ s(0) 

need be tested. 

From the theory referred to in section 6, if 9 < p then (24) has 

no solution.  This simply says that if the requirements die out too 

quickly, natural attrition is not enough to reduce the legacy sufficiently 

to meet the requirements.  Letting R = ^- as in section 6 we see from (24) 
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that not all starting stock levels s(0)  lead to feasible appointments, 

Let the  N-vector  x be any solution of the inequaliti.es 

(25) (I-R)x ^ 0 

x ^ 0, 

Then such an x is a feasible starting stock level if requirements are 

geometrically changing at rate 6. It is easy to see from (25) that any 

x satisfying (25) is also a feasible starting stock level for any 61 ^ 

Example  9:     Let     Q    be  given  as  in  example 4.     Thus 

Q = 
.4       .1 

.3       .7 

The values of  x  satisfying (25) are plocted in Figure II.6 for  6 = l.Oj, 

0.9, 0.8,  and 6 = p = .779.  Note that the set of feasible starting 

vectors increases with 6 and in each case forms a cone.  As 6  decreases 

to p,  this cone degenerates to a line. 

Problem 19:  Show that the requirements  s(t) = .9 s(0),  with s(0) = 

[50,60]  cannot be met for any  t,  but the requirements  s(t) = (1.05) "3(0) 

can be met starting at  [50,60].  Find the input vectors  fn(l),...,f (5) 

in this case. D 
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Figure 11-6: Sets of Feasible Initial Vectors for various Geometric 
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8.     A University Faculty Model. 

The  examples discussed  so  far have been of  simple fictitious systems 

with only  two or  three  states.     These allowed  us  to  investigate various 

implications of   the cross  sectional model without  becoming involved   in 

systems with large numbers  of classes.     In  this  section we describe  a 

cross-sectional   flow model of a University  faculty using  real data and 

appointments. 

The  faculty  of a  university can be  partitioned   in many ways.     For 

example,   they could be  partitioned into  classes depending on their academic 

department,   their  status,   their  pay grade,   their  age or  some combination 

of  these.     The  choice  of a  classification  scheme must  reflect   the intended 

use of the model.     In   the  example  treated here  the basic  questions were 

of  rank structure.     In   the   institution  in  question,   namely the campus 

of  the University of  California,   Berkeley,  models were  required which would 

describe movement  of   faculty between ranks  and  which could be u^ed   to 

determine  the effects  of various hiring  and  promotion policies on rank 

structure  and  tenure/non-tenure ratios. 

As part of  a larger  study in University Planning,  Branchflower   [1970] 

formulated  and  analyzed  a model of faculty  flow of  the  type discussed  in 

this chapter.     The data  from his work  is   summarized   in Table II. 1, which 

gives the actual movement  of  faculty through  the  thirteen ranks of  the 

College of  Engineering  at  Berkeley in  the period  1  July  1960  to 1 July 1968. 

Since the  purpose  of  this model  is to  study  the distribution of faculty 

in  the active ranks,   the "retired" class was  considered  external to  the 

system. 

-'-■-   .■:■.<■-::.:   ^.-. .t... ^ ./.^ -i.. ■■-.^ ^v-^ ■;,;■: ,.,..^ ^-.  .^ ::■ ,.v .^-l^/.^vi... ;.;.<■ --■^■^^.:.^-.:^ ■■■ .1-,.;.;.,   ... ^   :.:,;-   .-;      •..,-■,       —  ■■■ ^--^    <^< .t.^:' ■'  <  ' ' ^''•^^fttfiMi^"'"--'-'    ^ ■'' '-<" '• iVTlitätäitäitliiimWfä 
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The numbers in Table II-]require some explanation.  They are 

aggregated figures over the eight year period.  What Branchflower did was 

to determine the stock levels as of 1 July in a given year (say 1960) , and 

determine how many of these either stayed in the same rank, moved to some 

other rank or left the active ranks by 1 July of the following year.  Thus, 

he determined eight matrices with numbers of actual movements in each one. 

The table given here is the sum of these eight rratrices.  Thus, in the 

period 1960 to 1968 a total of 70 faculty in rank Associate Professor step 

3 moved to rank Full Professor step 1 in a one-year period.  In the eight 

year period only one person obtained a double promotion from Associate 

Professor step 3 to Full Professor step 2.  Columns 14, 15 and 16 show 

the total numbers who retired, resigned and died respectively in this 

period, and the final column gives the row sums.  Row 14 gives the total 

number of new appointments to each rank in the eight year period, with a 

total of 98 new appointments in the eight year period.  The Q matrix for 

this system is calculated from this aggregated data and is shown in Table 

II.2. Only the non-zero entries are shown.  A characteristic of this 

system is immediately obvious from this  Q matrix.  Since no demotions 

occur and since the ranks have been ordered in increasing order of seniority 

Q has a lower triangular structure; that is, all  q..  e.Dove the main 

diagonal (all elements  q,.  with  i > j)  are zero.  The dominant fractions 

lie on the main diagonal and the one below it, showing that one either 

stays in the same rank or moves to the next highest one except for rare 

double promotions.  This structure for Q  is found in many systems. 

The reader should question the aggregation of eight years of data 

to determine Q.  Why eight?  Why not one, three, six, etc.? No attempt 

i*.,^:^iwiu.U^«viii«fl;!,V.^^.^A:'iJ 



38 

n-. 

CM 

O 

CN O 

H 
< 
Q 

CO 

\0 (N O 

O 

r-       O       iH 
vo       m       o 

r- rH rH 
m      <r      O 

o 

H 
Pi 
H 

r~-       n       o 
<f <f iH 

w 
H 

CO CN 
o 

<r       r~-      <}• 
<r        ro        iH 

^H       r^-       r-- 
<r       <r       o 

co      ^D      -a-       <t 
rsi      m       o       o 

Ö 

H 

■u 

4J 
an 

m       vo      r^      oo       (Ti CN| CO 

ili^:^ay^^^->.fe^^^<i^r.i^^ÄÄ.>^^*ai6^i^'^ti^^^^ ,^>^:^Si/,:.^!;^W.*:^^ .: ,-e^iirKliliiti^llfeSyHH 



39 

has been made here to do any statistical studies on this data.  Such a 

study would be outside the scope of this book.  Our only excuse for using 

eight years of data is that it was available and gave reasonable numbers 

in the non-zero cells so that fractions could be calculated.  The inter- 

ested reader can obtain more details on the original data and questions 

of the stationarity of Q  from Branchflower's paper. 

Suppose we take 1 July 1968 as our point  t = 0.  The stock levels 

s(0)  are given in row 14 of Table IT. 3. Thus, on that date the faculty 

had a total size of 210 people.  Let us assume that the faculty is to 

stay fixed at this size with no vacancies unfilled.  Various hiring 

policies can be tried using our constant size-predictive model with 

N = 13 to determine the long-run effect of these policies. 

First we calculate w ,  the vector of fractional withdrawals from 

each state from Q  in Table IT. 2. Thus 

/ = (.08,.05,.05,.06,.00,.01,.02,.02,.04,.04,.01,.03,.03). 

If this is appended as a row to  Q  the columns will each sum to one. 

Suppose the hiring policy of interest is one in which all new faculty are 

hired into Assistant Professor step 1. Then 

a= [1,0,0,0,0,0,0,0,0,0,0,0,0], 

and the matrix 

P = Q + a.w 

is shown in Table 11.3. Using this matrix the steady state vector v of 

fractions in each state is calculated, using equation  (12)  and multiplying 

fesaiMM^»j^iaA8aaäa^^ 
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this by the total faculty size 210 gives the numbers in each rank in the 

long run.  These are shown in row 17 in Table 7 1.3. 

The results obtained might come as somewhat of a surp "ise to a 

university administrator.  In steady state, if the size of tie institution 

stays constant, and if the same retention and promotion structure holds 

in the future, the faculty will finish up with over 41% in Full Professor 

rank at overscale grade, 15% Assistant Professors, 14% Associate Professors, 

and, since in this institution tenure is given to all grades of Associate 

Professor and above, a faculty with 85% tenured. 

Such a result may not be so disturbing if the time it takes to 

reach this distribution is very long.  The distribution in 1968 had 7.6% 

full professors overscale, 18% assistant professors, 21% associate professors 

and 82% tenured. Thus the tenure fraction is not changing much but the 

average grade of faculty is increasing significantly.  A calculation of 

the stocks at five years (1973) and ten years (1978) is shown in Table 

11. 3 in rows 15 and 16 respectively.  The steady state distribution and 

those at times  0, 5 and 10 are shown plotted in Figure TI.7. Also for 

simplicity the percentage in each of the major groups, assistant professor, 

associate professor, full professor (regular), and full professor over- 

scale are shown in Table II. 4. 

It is clear from FigureII.7 and Table IT.4 that the use of the historic 

Q matrix to a system of constant size leads to a very large increase in 

the highest ranks, even though all new appointments are made in the lowest 

rank. Any other appointment policy would lead to an even more top heavy 

structure.  A look at the historical data (not given here) shows that in 

periods up to 1968 this particular institution was expanding. We might 

.■■.... .■.-.■.-,■>■... ..-.■. ■\.:~-.-.-.^;.-.:l.'./'.-'^■■./.■,r.'ir^*^y&äim 
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FIGURE II. 7:  DISTRIBUTIU.JS BETWEEN RAMKS 

Period Assistant Associate Full Overscale 

0 18.1 21.4 52.9 7.6 

5 14.8 ly.o 49.5 16.7 

10 lb.7 13.8 45.3 25.2 

Steady State 15.2 14.3 35.2 41.4 

TABLE II. 4: PERCENTAGE DISTRIBUTIONS BY MAJOR RANK. 

■L.'„^-.:v^;~:-/-..^-*"Wv^.^,~i>f^ 
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ask what the distribution among ranks would be if the system could continue 

to expand.  Table II. 5 gives the steady state percentages in each major 

rank for growth rates in new input of 5%, 3%, constant input, and a 

decrease in input size of 1% per year. 

It is clear from this table that a small growth rate substantially 

increases the proportions in the lower ranks.  The large "pile-up" in the 

overscale rank which takes place with no growth is substantially reduced 

with a 3% growth rate.  Notice how the overscale percentage increases if 

the system starts to decrease in size. 

The calculations in Table II • 5 were made using equation (21)  in 

the following way.  The input vector  f  had seven people entering in 

state 1 and no one else in the other states.  The matrix 0(6) = (I-Q/e) 

was calculated using Q of Table II-2 and values of 9  equal to 1.05, 1.03, 

1.00 and .99 for 5%, 3%, 0 and -1% growth.  The vector  D(e)f was found 

and normalized to sum to 100. 

t^*^.*u^^r.ä^^;^->i^ta^vc^^.^kl^^ 
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Associate           Full Overscale 
Professor Professor Professor 

24.1                  29.5 11.Ü 

21.5                 31.9 18.4 

14.3                 35.2 41.4 

1Ü.3                 23.9 55.3 

TABLE   II.5:  PERCENTAGE   IN  EACH  MAJOR  RANK  FOR  VARIOUS  GROWTH  RATES. 

Growth Assistant 
Rate Professor 

+ 5% 35.4 

+ 3% 28.2 

0 15.2 

- 1% 10.5 
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9.  Probabilistic Interpretation of the Fractional Flows. 

In earlier sections q..  denotes the fraction of people in class i 

at the end of one period who are counted in class j at the end of the 

following period.  Each individual follows his own path through the system 

and these paths vary greatly from one individual to the next.  These 

individual paths have not been considered to this point.  They have pur- 

posely been suppressed, in fact, since a prime aim in the choice of our 

models is to have them contain as little amount of detail as possible in 

order to answer questions of interest.  In later sections it will b« 

necessary on occasion to follow individuals from class to class as they 

move through the system.  Each path can b^ considered to be in some sense 

random.  By this we mean that if a person is chosen from the system and 

his path examined, the successive classes of the individual and the times 

when he enters the classes will not be predictable with certainty.  What 

we can say is that there will be a certain probability that the individual 

will be in a given class at a given time, or that he entered the class at 

a given time.  It turns out that our earlier model will suffice if the 

fractions  q..  are interpreted correctly. 

Consider the path that an individual takas as he moves through the 

system.  Let us suppose he enters in period  u and is first counted at 

time u  in class k.  Let us further suppose that  t periods later he is 

counted in class i.  Where will he be at time  (t+u+1)  if at  (t+u)  he 

is at i and he entered in k at time u?  We cannot say with certainty, 

but let us say that q..  is the probability that an individual who enters 

in period  u  in class k and is in class i at  (t+u),  is in class j at 

(t+u+1).  Notice that we are assuming that this probability is independent 
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of  t,  u,  and k,  and is the same for all individuals.  This group of 

strong assumptions says that the probability an individual who is in some 

class i in a time period moves to class j in the next time period, is 

independent of the particular time period and all previous history of the 

individual.  In addition we assume that all individuals in the organization 

behave independently of each other.  In the language of probability theory, 

each individual follows a path which evolves according to the laws of a 

homogeneous finite state Markov chain. 

These are very strong assumptions and in many cases are unrealistic. 

As ue shall see they do lead to the fractional flow model of earlier 

sections.  However, the reader should understand that though these detailed 

assumptions lead to the earlier model, that chey are not required to hold 

in order to justify the fractional flow raod.il.  In mathematical terms they 

are sufficient to lead to the earlier model but not necessary.  Here is a 

case where a too detailed look at the real system, by trying to describe 

individual flow patterns, can lead to confusing and unnecessary assumptions. 

The art of good modelling is to go into only enough detailed structure as 

is necessary for the particular application.  For a retirement model des- 

cribed in section 10 we need a probabilistic interpretation.  For a faculty 

flow problem in section 8 the probabilistic interpretation was not required. 

The symbol s.(t) has been used earlier to indicate the stock 

level in class j at time  t.  Now it must be interpreted as the expected 

stock level in j  at  t.  The upper case letter S. (t)  is the random 

variable which denotes the (uncertain) stock level, and E[S.(t)] = s^(t). 
J       J 

If the stock levels at t are given it is easy to find the expected 

stock levels at  (t+1)  in terms of these.  If there are S (t)  people in 
i 
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class i at  t,  the expected number of these in j  at  (t+1)  will be 

S.(t)q...  This holds for all  i = 1,...,N,  and if we add in the new 
i   Ji 

flows into j  from outside we have 

:[s (t+i) s1(t),....sN(t)] = l   q.^.Ct) + f0i(t+i). 
i=l J 

Taking expectations of the stocks  S (t),...,S (t)  gives 

s (t+1) =  ) q.^^t) + f0i(t+l),   j = 1,2,....N, 

or in matrix notatic n 

(26) s(t+l) = Qs(t) + f0(t+l). 

This is the same as the basic flow equation (2)   in the fractional 

flow model.  Thus, in terms of expected values the Markov assumptions lead 

to the fractional flow model.  One could postulate a number of detailed 

models which would lead to equation(26) in terms of expected values.  In 

many applications the only variables of interest are these expected values 

and many of the detailed assumptions are unimportant in calculating these. 

However, if variances and covariances are to be calculated to estimate the 

effects of uncertainty the reader must be much much more careful in the 

choice of a model. 

Many of the results in earlier sections have a probabilistic 

interpretation in terms of the Markov model.  For example let us look at 

the matrix D = (I-Q)  .  First let us look at the  (j,i)  the element 

of the matrix Q  for some fixed  n > 1.  Call this q.. .  Then from 

matrix multiplication we have 
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(n)   v   (n-1) 
"ik  qki- hi    - ^  ^ 

This equaLion shows us that  q..   is the probability that an individual 

is in class  j   a  periods after being observed in class i.  Now since 

(I-Q)_  can bu written as  I Q >  t'16  U,i)—L element of I)  can 
n=0 

be written 

d.. = q.. + qf2) +q!3) + ... + ^   +   ....   if  i/ j. 

(27)    and 

d.. =l+q..+qf2)+qf3) + ...+qfn)+ ... . 
IX 11     11     nll nll 

Suppose an individual enters the system in class i. How many 

periods can he be expected to spend in class i?  He spends the first one 

there since he entered in this state (by our accounting assumptions).  He 

spends the n— period in i with probability q.. .  Thus, the second 

equation in (27) gives the total expected time an individual spends in i 

(that is, expected number of periods) if he enters in i. For j ^ i he 

cannot be in j  the first period. Thus, the first ecjuation in (27) holds 

in this case.  The matrix D gives us the expected durations an individual 

who enters in a given state spends in each of the states. 

Problem 20: Show that eD is an N-vector which gives the expected number 

of periods an individual spends in the system if he enters in a given state, 

G 
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10.  A Retirement System Model. 

The theory of cross-sectional manpower flow is used in this section 

as the basis of a model of a retirement system.  This retirement system 

model allows a decision maker to investigate various retirement policies. 

Concepts developed in section 9 are used, and an early retirement scheme 

is investigated as an illustrative example. 

The retirement model relates the manpower flow process to the 

financial parameters ^hat describe the retirement system.  First we calculate 

the expected present value of the annuity that an individual will receive 

discounted to the time of retirement.  Then we calculate the present value 

at retirement of all contributions to the individual's retirement fund, 

and match this with the annuity. 

In this section time period  t  is assumed to be the period in which 

retirement takes place, and periods are assumed to be of one year duration 

for convenience.  If an individual entered the system in period  (t-k)  it 

is assumed his length of service is k  (note that it is actually between 

(k and k + 1).  A person who enters in period  t  (and is then counted 

at time t)  has length of service zero.  We shall say that a person who 

is in class i and has length of service k is in state  (i,k). 

Let a.(k,t;  be the annuity paid an individual who retires in 

period t while in state  (i,k),  and let m.(i,k)  be the probability 

that this individual will receive exactly j  annuity payments in retire- 

ment.  Note that  Z,--n m.(i»k) = 1 for all states  (i,k)  and let p , 
J-U       J IK. 

2 
and     a        be  the mesn  and  variance  of  this distribution respectively.     If 
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the value of future annuity payments is discounted to the retirement period 

t using a discount factor ß, an_d the retired individuai receives exactly 

j     payments,   then   the  value of his  payments  at   retirement  is 

a.(k,t)(l+ß+ß2+...+ßj":l)   =a.(k,t)   —}'-^-  ■ 
i i J —p 

Now unconditioning on j, the expected value at retirement of all payments 

to a  person who   retires   from state     (i,k)     is 

(28) [1   -     l    ß:jmj(i)k)]a.(k,t)/(l-ß) 
j=0 

If   there   is  any  variance  in   the  lifetime  of  ar   individiu'l after 

retirement we would  expect  this   to  affect   the   total   of all  annuities  paid 

out  if   the  discount  factor    ß     is  not equal   to   1. 

Problem  21:   Using (28) show   tha.  if   the  discount   factor    ß     is   1   (no  dis- 

counting of  future  monies)   then  the   total  expected   value of all   payments 

is  simply   the value of  a  single  payment   times   the  average  number of  pay- 

ments;   it  is  independent  of   the variance of   the  distribution    m.(i;k). 

Explain  this  result. G 

It  is  realistic   to assume  that    ß     is  less   than,  but  close  to,   one. 

By using a  Taylor  series   expansion  of (28) about   the  point     ß  = 1,     and 

ignoring  terms  in     (1-ß)   ,     j   >  2,     the   total   expected  present worth  at 

retirement of annuity  payments  can be shown  to  be well  approximated  by 

(29) [„.^ adii(oak+|12k.„ik)]ai(k,t). 

Let v.(k,t)  be the expected value of the retirement fund in 

period  t of a person who retires from state  (i,k).  By equating fund 
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size   to  payments  we  see   that   the  annuity he   can  he   paid   is  given by 

v.(k,t) 
(30) a   (k)t)   =       /    , 

ik 2 i k     ik     ik 

'Hie  quantity     v.(k,t)      is  of  course  n.ade   up   of  contributions   to 

the   fund  during   th--  person's   time   in  the  organization.     it will   depend on 

his  previous  salaries,   which   in  turn will  depend on   the  individual's 

detailed  movement   between states.      It   is   this   quantity     v.(k,t)     which we 

no-   investigate,   and  we   shall   need   the   rross-sectionaJ   flow model  with 

its   probabilistic   interpretation. 

Let    c.(k,u)     be   the  contribution   to   the   retirement  fund   (employer 

plus   employee')   in   period     u     for   an   individual   in  state     (i.k)      in   that 

period.     If we  consider  a  sample  history of  a   person and  assume   that   the 

fund  earns   interest  at   rate    a,     then we  can   trace   the growth  of   the 

retirement   fund   over  time. 

First we  see   that     v.(0,u)   = c.(0,u),      tlie  contributions   for a 

person   in   period     u     who   entered   in   that   period   in  class     i.     Using  con- 

ditional   probability arguments we   find  an expression   for  the expected 

present   value  of   the   fund. 

Civen   that   a   person   is   now   (period     t)   in  state     (j,k)     and was 

in state     (i,k-l)      in     t   -   1,     then  the  expected  value of   the   fund  is 

(31) c.(k,t)   +   (l-ta)vi(k-l,t-J) 

Let     p..(k)     be   the   probability   that   an   individual   who   is   now   in  state 

* 
(i,k)     was   in state     (i,k-l)     in   the  previous   period.       Note   that   for 

L 

(,'aro  must   be   taken   here.      It   may   not   be  possible   to   be   in  some   state     (j,k), 
depending on how  people  enter   the  system and  how  promotions are  made.     In 
this  case we would   be  conditioning on  events which  occur with  probability 
zero.     This   technical   difficulty  can  easily be  overcome   in a  number of ways. 
For  simplification   in  exposition we  assume   that   all   states     (jjk)     for which 
v.(k,t)      is   defined   can  be  obtained  with   positive   probability. 
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N 
k >  1,       I    p..(k)   = 1,     and we  are assuming  these  probabilities  are 

i=l    1J 

independent of   the  period .     We  return   to this problem  later.     Now uncon- 

ditioning   (31). 

N 
v  (k,t)  =  c   (k,t)  +  (1+a)     I    v  (k-l,t-l)p. .(k), 

J J i=i    i iJ 

or,   using  vector/matrix notation, 

(32) v(k,t)  = c(k,t)  +  (l+a)v(k-l,t-l)P(k), k  > 1. 

Here,     v(k,t)     and    c(k,t)     are     N-component  row vectors,   and    P(k)     is 

an    N x N    stochastic  matrix   (each column sums   to   ].) . 

By  successive  substitution (32)  is  solved  for     v(k,t),     and we 

obtain 

k . j 
(33) v(k,t)  =    I     (l-ta)J   c(k-j,t-j)     n    P(k-i+l), k >  Ü, 

j=0 i=l 

where  an empty product   is   taken  to be   I,   the   identity matrix,   and 

j 
n    P(k-i+l)   = P(k-j+l).P(k-j+2).-".P(k), j  >  1. 

i=l 

Equation (33) gives the expected value of the fund for all states 

(i,k)  in terms of the contribution vectors  c(0, t-k),c(l,t-k+1),..., 

c(k,t),  the interest rate a,  and the matrices P(i),  i = 1,2,...,k. 

It remains to investigate these matrices, which are of course related to 

the underlying cross-sectional flow model (which we have not used to this 

point). 

Consider an individual who entered the system in period  t-k 

and who is in class j  at time  t. Let p..(t,k) be the probability 

that this individual was in class  i at  t - 1.  We wish to discover 
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what   asfaimptions  are  necessary so   that     p,.(t,k)     will be   independent  of 

t,     so   that     p..(k)     is  well   defined. 

Define     7.(1)     as   the   person's class  at   time     t,     and    E    as  the 

period of  entry,   both   random variables.     Then 

p..(t,k) = P[z(t-i) = i|z(t) = ],)•: = t-k]. 

From  conditional   probabiLity  arguments, 

,^0     (t   k)   .   P[Z(t)   =  .ilz(t-l)   =  i,E  =   t-k]P[Z(t-l)   = i|E  =  t-k] 
OWi^'*)   - p[Z(t)   =   j^E =   L._kj 

From   the Markov  property  of our  fractional   flow model 

(35) P[Z(t)   =  j|z(t-l)   =  i,E  =   t-k]   =  q.., 

independent   of     k     and      t.     Now  define 

z.(t,k)   = P[Z(t)  =  i|E =  t-k]. 

Now     z.(t,0)   = 1'fa  person wlio  enters  in     t    does  so  in class    i]. 

Therefore,   if     f     (t)     is   the   flow   from outside   the  organization  into 

class     i     in period     t,     and     ^(O     ^   llie    N-vector  of  these   flows, 

(36) z.(t,0)  =   f0.(t)/ef0(t), 

since  ef (t)  is the total new input in period  t.  By a straightforward 

conditioning argument 

N 
z.(t,k) = I    q ..z.Ct-^k-l), 

i=l 

or  in  vector notation 

(37) z(t,k)   =  Qz(t-l,k-l)   = Qkz(t~k,ü) 
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From this uquation we se? that  z(t,k) is independent of  t if 

and only if  z(t-k.,0)  is independent of  t. For this to be true v:e can 

see from (36)that the fraction appointed into any ..ITSS  i  should be the 

same for all periods.  This does not say that we have tu appoint the same 

number into  i in each period.  Indeed this can vary from period to 

perio ; but the fraction must stay constant. 

We now assume that for any period  u 

a. = f0.(u)/et0(u),    i = 1,2,...,N, 

and   let     a    be   the     N    dimensional  column appointment  vector.     Then  from 

(37) 

(38) z(t)k)   =  Q a, 

Using this with (35) in (3A) We obtain 

(39)        p..(k) = p. .(t,k) = q..z.(t-l,k-l)/z.(t,k) . 

Equations   (39)   and   (38)   show   that   the matrix    P(k)     depends  only 

on     Q    and    a,     and   (39)   can be  written  in matrix  form. 

For any  vector    x   =   (x   , x   ,...,x ),     let     [^Ir,,,     represent   the 

N  x  N    matrix whose  diagonal   elements   are   the same  as   the  corresponding 

elements  of   the vector,   and  all  off-diagonal   elements   are   zero.     Thus 

...     0 

0       x2 ' 

0 

Q  ■  -   - -   0 xK. 
N 

'UG 

x       0 

Note that from ou ■ assumptions  z,(t,k) > 0  for all  j  and  k. 
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Also   let     Q'    denote   the   transpose  of    Q. 

Using  (38)   anil   (39)   we   see   that 

m) =  [Qk~J^lDC Q'lQ1^]"',, k = 1,2,...   . 

This  representation  of     ^(k)     c  early  shows   its  dependence on    Q 

and     a.     'Hiis  can  now be   used   in (33) to  show   that 

k . . 
(40) v(k,t)   =    )'     (1^)]   c(k-.i,t-,j)[QK  ja|IVJQ']J[[Q  a]n.,] 

Equation   (40)   now  gives   the   expected  value  of   the fund   for each 

state      (i,k)     in   terms   of   the   interest   rate     u,      the   contributions 

c(0,t-k),...,c(k,t),      the   appointment   vector     a     and   the transition 

matrix    Q. 

Probl em 22-   Assume   that   all   new admissions  arc  made   into class   1.     Thus 

a     is   the   column   vector      [1,0,...,0].     Use  equation   (40) to   show   that   for 

this  case 

V.(k)   =      I      (iW      I     c    (k-j.t-nql^q^-^/q}^, 
j=0 £=L l J 

aivl   interpret   this   result. [j 

In many   institutions   contributions  are   related   to   salary.     Let   us 

assume   that  a   fraction     5     of  an  individual's   salary   is   placed  in his 

retirement    fund   each   period,   and   let     s.(t)     be   the   salary   of  an   individ- 

ual   in  class     i     at     t,     independent  of  his  length  of   service     k.     Let us 

further assume   that  salaries   have  been growing  at  rate     y     l,er year. 

* k 
The   inverse   of     [Q  a I    ,     exists   it   all   diagonal    terms   are   positive.     This 
is   true   ii   all   states    '(j,k)     can   bo  held  with   positive   probability. 
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Then   the contribution  in  period     t  -  j     of  a person who was   then   in class 

i     would  have been 

6s.(t) 
c   (k-j,t-j)   =       . 

(l+Y)' 

If     s(t)     i.s  a   row vector of  current   salaries  by class,   then   (40)   becomes 

(41) v(k,t)=6    I     (jS     s(t)[Qk"ja]     [Q'JJ[[Qka]DG] 
i=o       T 

Problem 23.    Interpret   (41) when   the   salaries have been   increasing  at   the 

same   rate   as   the   interest   rate   on   the   retirement   fund. r, 

Equation   (41)   can  now  be   used   to   calculate     v.(k,t)     and   this   used 

in  equation (30) to calculate   the  annuity     a.(k,t).     We   illustrate   the  model 

in  analyzing  alternative   retirement   and  appointment   schemes   for  a   univer- 

s i ty   faculty . 

A university faculty model   is   formulated  in which  faculty  can be 

in   any  one  of  the  following  15   classes: 

Class ^£.sj-ir i-Pi ^ IP 

1 Nontenure 
2 Tenure - Age   30 to 34 
3 Tenure - Age   35 to 39 
4 Tenure - Age  40 to 44 
5 Tenure - Age  45 to 49 
6 Tenure - Ago  50 to 54 
7 Tenure - Age   55 to 58,   Low  salary 
8 Tenure - Age   59 to 61,   l.ow  salary 
9 Tenure - Age  62 to 64,   Low salary 

10 Tenure   -  Age 55 to 58, Medium salary 
11 Tenure   -  Age 59 to 61, Medium salary 
12 Tenure  -  Age 62 to 64, Medium salary 
13 Tenure  -  Age 55 to 58, High   salary 
14 Tenure  -  Age 59 to 61, High  salary 
15 Tenure  - Age 62 to 64, High   salary. 
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Table II.6 gives the basic fractional flows between the 15 classes 

of faculty. We call this CL..  Table II.7  gives the fractional flows 

after an early retirement scheme has been emplemented.  We can this Q1. 

Table II.8 contains three different appointment vectors and a vector s 

of current salaries.  The ?>pointment vector a  is the one used before 

early retirement, a  is the one used after early retirement, and a. is 

the case where all appointments are made into non-tenure.  It was assumed 

that salaries had been growing at 4% per year and the interest rate on the 

fund was 6% per year.  The fund was incremented with 16% of the salary level 

each year. 

Equation (41) was solved for 3 cases, and the results for classes 

9 (tenured low salary, age 62-6A) and 15 (tenured high salary, age 62-64) 

for the expected fund values are given in tables II.9 and 11.10  Table 11.11 

shows the steady state stock levels for cases 1 and 2.  These we calculated 

using the "hindsight" model of sec?-ion 3 and a total system size of 413 

faculty.  For case 1 the calculations were made using Qn and a .  For 

case 2  Q  and a  were used, and for case 3 Q« and a  were used. 

All other parameters were kept the same in the three cases. 

Notice that with the implementation of the early retirement scheme 

the expected fund size is almost unchanged, even though there are large 

differences in the diagonal elements of Q  and Q  for classes 7 through 

15.  However, the steady state distribution of faculty has changed con- 

siderably, with a higher percentage of younger faculty.  The slight decrease 

in retirement fund size (about 1%) may be tolerable when viewed in light 

of the improvement in the distribution of faculty. 
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Class   i 

Class 8 9       10       11       12       13       14       15 

1 .72 
i 

.80 

      

  
2 .043 

.02 

.70 
L _ 

.76 
l  

.79 

.18 

3 .28     .77 

4 .007 1   -19 
  

5 .20 
  

6 
r 

L 
.78 

    

7 .06 

i 

8 
  

.19 .77 

9 .20 .88 

10 

  

—- 

.06 

.06 

 *— 
.77 \ 

11 

    

  
.21 .74 

.74 

  
12 

13 

.23 .84 
—- 

14 
    - —    

.23 .68 

15 .30 .70 

Table   II.6:     Fractional   Flows     Q       in a   Faculty  Early  Retirement Model. 
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10      11       12       13       J 4       15 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

.78 

.4 3 

.02 

.007 

7 

28 .77 

.19 .76 

. 20 
. ; 

1 

-i — 

,79 

18 .8 

.06 

.06 

.06 

,69 

.19     .54 

-+ 

.4 2 

.71 

21 .57 

.23 .4 7 

73 

23 .64 

.30 .62 

Table   II.7:     fractional.   Flows     Q       in a  Faculty  Early  Retirement  Mode] 
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Length  of  Service 

(years) 

Present  Value of   Fund 

Case   1              Case  2              Case   3 

20 94,579 92,114 86,787 

25 117,895 115,341 111,524 

30 14 3,897 141,085 138,387 

35 

40 

172,578 

204,029 

169,378 167,584 

200,34 7 199,337 

Table II.9:     Ketiremcnt   Fund   for   Faculty   in Class   15   at   Retirement. 

length  of  Service 

(years) 

20 

2 5 

30 

35 

40 

Present  Value of 

Case   1              Case  2 

Fund 

Case   3 

77,313 77,569 74,015 

99,799 99,614 96,203 

124,306 123,913 120,564 

151, 166 150,648 

180,047 

147,319 

180,671 176,705 

Table 11.10: Retirement Fund for Faculty in Class 9 at Retirement. 
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Class  1    2  3  4   5  6  7  8  9  10 11 12 13 14 15 Vacancies 

Case 1  110 19  38  39 42 40 11  9 15  10  8 12 10 10 10    30 

Case 2  120  21  43 43 46 43  9  3 9       4       2    11      9       7 34 

Table 11.11:   Steady State  Stocks  Without  and With  Early Retirement. 
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Case   3   is added  for il lustraLion.     J.t  shows  chat if a  policy 

change   were  made   co  appoint  only   non-tenured   faculty,   this  would   change 

the  expected   value of   the   riitirement   fund  even  if  no changes  were  made 

in   the   fractional   flows.     It   Is   interesting   to  see   that for  the   cases 

studied   the   expected   value  of   the   fund   decreases   if  appointments   are 

made  only   into  non-tenure. 

Hgure 1.1.8   shows  a  plot  of   the   fund   value   for  classes  9  and   15 

for   increasing   length of service   at   retirement. 

In  conclusion,   this section has   related  some   financial   variables 

to a  cross-sectional  manpower  flow model   and   indicated  how  to  calculate 

some   relevant  expected  values such  as   the  value  of  a  retirement   fund. 

The   spirit   '■'"   the model,  is more   important   than  the  particular   formulas 

and   examples   presented  here.     It   can   be   possible  with a  cross-sectional 

flow model   to  study   financial  questions   related   to  manpower policy.     The 

particular  model,   classification  scheme,   and  variables  under  study,   will 

depend  on   the  policies   to be  investigated  and on   the  questions  you wish 

to answer  about   the  system. 
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Class 15 

Class 9 

20 25 30 35 

Length of Service (yrs) 

40 

Figure II.8;  Expected Retirement Fund Size for Faculty Example, 
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11•     Student   Enrollment   Forecasting Models. 

Of   the  many  are:is  of application   of   the   fractional   flow model,   the 

authors have  gained  considerable experience  from  its   use  in student 

enrollment   forecasting of  university  undergraduates.     Let  us  consider   the 

classes  of  students   to   be   freshmen,   sophomores,   juniors  and  seniors;   thus 

we have a   four-class   model.     The   time   periods  are   taken   to  be  semesters. 

We  shall   find   that   a   number of  problems   arise  in   the  application of  a 

simple   fractional   flow  model.     These will  be  «-'icassed as   they  arise. 

The model  will   then  be   used   to predict  student   attendance  patterns,   and 

will be  checked against   a set of independent  data on  such attendance 

patterns. 

The   first  problem encountered  is   that   the  natural  accounting  and 

enrollment   period   in  a   university  student  model   is   either  the  semester 

or quarter.      For simplicity we  use   the   semester  here.     The  reader should 

have no   trouble   in  extending  the  results   to  a quarter  system. 

The   fractional    flows  between classes   from  the   fall  semester   to   the 

spring semester differ  considerably   from   those  between classes   from  the 

spring  semester   to   fall   semester.     If   litLle or  no   new  input  of  students 

takes  place   in   the   spring,   and  one   is  only   interested   in  forecasts   for 

the   fall,   the   detailed   flows  in   intermediate  semesters  could be  ignored. 

However,   in   the   institution we  studied   (the  Berkeley  campus of   the  Univer- 

sity of  California)   significant  new  input   occurs  each  spring.     Table 11.12 

shows   the  new   input   into   the   four  classe        iom  the   Fall  of  1962   to Fall 

of   1966.     Table 11.13 shows   the   fractionai    .    )ws     Q     and    Q*    between   classes, 

from Fall   to   Spring  and   Spring  to  Fall   respectively. 
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SemesLer 

Fall 1.962 

Spring 1963 

Fall 1963 

Spring 1964 

Fall 1964 

Spring 1965 

Fall 1965 

Spring 1966 

Fall 1966 

(1) 

Freshmen 

(2) 

Sophomores 
■ 

3525 678 

328 187 

3620 738 

346 209 

34 27 602 

256 180 

2579 390 

291 210 

3053 733 
,  . .  

(3) (4) 

Juniors Seniors Total 

1416        |       184 
i 

5803 

324 42 881 

1.569 199 6126 

408 45 1008 

1.442 202 5673 

452 49 937 

1042 125 41.36 

476 66 1043 

1418 205 5409 

...  _..  

Table 11.12;   New  Admissions,   University  of   California,   Berkeley, 

(1) (2) (3) 

(1) ' .926 

(2) .001 .857 

(3) .0 31 .902 

(4) .005 

(4) 

789 

Q* 

(1) {?■) (3) 

(1) ~.I03 

(2) .699 . 11 5 

(3) .792 .158 

(4) _ .749 

(4) 

3.1.2 

Table   11.13: The  Fractional  Flows   for Fall/Spring and  Spring/Fall 
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Let   time     t = 0     be   the  start of  a  fall   semester   (end  of a  spring 

semester;   the  summer  period   is  Ignored),   and   Jet   the  current   enrollments 

be  given by   the  4-dimensional   vector     s(0).     Then   in   the   spring enrollments 

will  be 

s(l)   =  Qs(0)   +  f(l), 

where     f(l)     is   the  vector of new admissions   in  the  spring.     Now 

s(2)   = Q*s(.l)   + f(2) 

=  Q*Qs(0)  + Q*f(l)   +  f(2) • 

If we  let    Q*Q  =  Q,     then   the  enrollments   in  successive   fall   quarters 

are   given by 

(42) s(n)   =  Qs(n-2)   + Q*f(n-I)   + f(n), n     even. 

'Hie   reader  should  now  see  how   the  basic  model   (equation   2)      can be  modi- 

fied   for  cyclic,   situations. 

Problem 24.   Show   that   the   stocks   in  successive  spring  semesters  are  given 

by 

s(n)   =  Qs(n-2)   + Qf(n-l)  + f(n), n =   3,5,..., 

where    0 = QQ*. 

Problem 25.   Determine     Q    and     Q     for  the  data   in  Table 11.13 

Prob lern 26.   Determine   the:   forecasting  formula  for  successive   fall  quarters 

assuming   (1)   three  quarters  operation,   (.".)   year-round  operations  in 4 

quarters. ri u 

A second   problem was   found when   the   university  data was   analyzed. 

A  significant  number of  students have breaks   in   their  attendance   (in 
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addition  to   the obvious  summer periods)   between   initial  entrance  and 

graduation,   campus   transfer,   or  drop-out.     It  sterns   that  students  often 

take  a  semester off  and   return  at a   later  date   to   finish   their degree 

program.     However,   how   is  one   to  distinguish between  a  student who  has 

left  permenently,   and  one who   is  on a   temporary   'vacation'?     Indeed,   the 

student himself may  not know which  state  he  is   in!     Records  are  kept which 

distinguish   "continuing"   from  "returning"  students  once   they  are   re- 

admitted.     It was   found   that   this  data  could  be  used   to  estimate   the 

fractional   flows   to  and   from a   'vacation'   s^ate.     Thus  a   5-state  model 

is   postulated   to  more   realistically  model   the  students'   attendance  pat- 

terns.     For  details   the   reader  should  consult     Marshall,   O'iver and 

Suslow  [1970]. 

Table  [I.lAshows   the   fractional  flows  between  classes,   where state 

;   represents   the   'vacation'   state.     Notice   that  of   those  on  vacation  in 

a   fall  semester   .632  stay  on  vacation  in   the  spring;   but  of   those  on 

vacation  in  the  spring  only   .342 stay on vacation   the   following  fall. 

This  shows   that  students   prefer   to   return   to   their  studies   in   the   fall 

each year,   a not  unexpected  observation. 

One  could now  use  either   the  4-state or  5-state  models   in  equation 

(42) to   forecast  student  enrollments,   and more will  be  said  about   this 

later  in   this  section.     At   this  point we  use   the  model   to   investigate 

attandance  patterns,   and  check   the   results  against  an  independent   set of 

data.     The  attendance   patterns   of all  students  who  entered   the  Berkeley 

campus   for  the   first   time  in   the   fall   semester of   1955  were  studied,  as 

were   those  of   the  similar  group who  entered  for  the   first   time  in  1970 

(for details  see    Suslow,   et  a]   [1968]).     A  group with  a   common 
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913 .040 _ 

001 .831 .0 74 

.031 .852 .155 

.005 .75 7 .099 

012 .026 .050 .0 32 .632 

067 .084 

699 . 0 39 .145 

.792 .059 .234 

.749 .207 .193 

0 36 .0 76 .100 .104 .34 2 

Table    ri.14: Fractional   Flows   for  ilic  5-state  Model, 

characteristic such  as  entrance  date  and  state  at   entry  is   called  a 

'cohort.' 

Table II. 15 gives   the  numbers  and  fractions  of  students  in both   the 

1955  and  1960  cohorts who  attended  a  given  semester  after entrance.     The 

fractions are  plotted   in   Figure 11.9. 

A striking  feature  of   this  data  is  its  stability over   time. 

Attendance on any  given semester after entrance  varies   little   from the 

195 5   to   1960 group.     Changes   in   University  probation   policy  for  freshmen 

and   sophomore  students appears   to explain  the  small  discrepancy  in  the 

third and  fourth  semesters   (see     Suslow,   et  al   [1968]). 



Semes ULM
- 

after 

Entrance 

2nd 
3rd 
4 th 
5tli 
6th 
7 th 
8 th 
9 th 

10 th 
llth 
12th 
nth 
]4Lh 
15th 
16 th 

19rjr)   Enlcring Croup 

 n 

Sp :ci fie 
sei nester 

~F T9 55'" " 
S J956 
F 1956 
S 1957 
F 19 5 7 
S 1.9 58 
F 1958 
S 1959 
F 1959 
S 1960 
F I960 
S 1961 
F 1961 
S 1962 
F 1962 
S 1963 

Nimihor 
of 

students 

'Yro6T~ 
1,924 
1,585 
1,455 
1 ,260 
] ,194 
1,114 
1,058 

4 24 
2 76 
107 

77 
37 
34 
25 
15 

!• raction 
at Lendi ng 

j;i ven 
semestc r 

- -■~9-j2 

.905 

.756 

.684 

.59 3 

.562 

.524 

.498 

. 199 

. 1 30 

.050 

.0 36 

.017 

.015 

.011 

.007 
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I960  Entering Croup 

Speci1 i c 
semester 

V "1960 ' 
S 1961 
F 1961 
S 1962 
F 196 2 
S 1963 
F 196 3 
S 1964 
F 1964 
S 196 5 
F  1965 

Number 
of 

studenls 

 37228' ' 
3,002 
2,331 
2,104 
I , 891 
1,799 
1,753 
I ,690 

693 
461 
182 

Frac1 i on 
.11 tending 

given 
semester 

'~97~8 
.910 
.706 
.6 37 
.573 
. 54 5 
.531 
.512 
.210 
. I 39 
.055 

Table    11.15:  Number  of   Students   Attending  any   Given   Semester. 

An   important  point   to  note   is   that   the behaviour of  a  cohort  appears 

to  be  independent  of   its  size,   a  feature  which  may  prove   very   useful   when 

major  changes   from  today's  admission  policies  are   considered.     The  cohorts 

of   2126  and    3290  students   have  essentially   the  same  attendance  character- 

is tics . 

Table 11.16 gives the numbers and fractions of students in each 

cohort who attended without interruption at least the given number of 

semesters.     The   fractions  are   plotted  as   the  lower  curve   in  Figure 11.10. 

This   curve  has  essentially   the  same  shape as   that   in   Figure    11.9 

with  a   sharp  break  point  at   the  eighth  semester  and  an  increased   tendency 

(or a  student   to  leave   the  system after  one or  two  years.     We  again have 

close agreement between   the  1955  and   1960  data. 
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Figure II.9: Fraction Attending given Semester after Admission. 
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Table 11.16 gives the fractions of students from each cohort which 

spent at least a given number of semesters in the system- This includes 

semesters in attendance and semesters o*-. vacation. 

These results are plotted Za   the upper curve in Figure 11.10. Both 

curves in Figure n.10would coincide if students had no vacations but the 

large difference between the two curves (15% by the 8th semester) shows 

that a significant proportion of students interrupt their consecutive 

attendance patterns by vacations. 

Returning now to our fractional flow model, we first calculate 

the fraction of students attending the n— semester after entrance in 

st 
a fall semester as a freshman.  For the 1— semester after entrance 

(that is, the entering semester) we take it to be 1.  For the second semes- 

ter the first column of 0 gives the fractions of these freshmen in each 

state.  Summing over the four attending states gives the fraction in 

attendance. 

Problem 27: Show that for n  even, the fraction attending the  n— semes- 

ter after attendance is given by summing the first four elements of the 
n n-l 

first column of  Q ^ ,  and for n  odd,  Q  ^  . 

Table fl.18 shows the calculated probability of attendance in each 

semester for the four state model and this is plotted in Figure 11.11 • The 

calculated distribution agrees well with that of the 1955 and 1960 fresh- 

men cohorts.  However, since there are no vacation states, attendance, 

consecutive attendance and elapsed time are the same in this model and 

we naturally get poor agreement with the cohort data for consecutive 

attendance and elapsed time. 
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Number of 1955  Entering Group 1960  Entering Group 
Consecutive 
Semesters 
Completed 

(2,126   students) (3,298  students) 

Number  of 
Students 

Fraction 
Number of 
Students 

Fraction 

1 2,067 .972 3,228 .978 
2 1,923 .904 2,994 .907 
3 1,554 .730 2,301 .697 
4 1,373 .645 2,018 .611 
5 1,112 .523 1,679 .509 
6 1,027 .483 1,554 .471 
7 883 .415 1,371 .415 
8 819 .385 1,291 .391 
9 222 .104 36 3 .110 

10 112 .052 181 .054 
11 15 .007 33 .010 

Table 11.16:   Students  Compjeting  Each   Consecutive  Semester 

With  no   Interruptions   in Attendance 

Number  of  Semesters 
in   the  System 

1955  Data I960  Data 

1 .976 .984 
2 .929 .926 
3 .804 .769 
4 .752 .718 
5 .655 .660 
6 .625 .634 
7 .565 .589 
8 .528 .556 
9 .207 .234 

10 .129 .155 
11 .033 .053 
12 .019 .000 

Table    11.17 : Fraction   Completing at  Least  a Given 

Number of  Semesters. 
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Semester 
n 

L 
2 
i 

4 
5 
6 
7 
8 
9 

10 
11 
12 

Fraction   in Fractions   from 
Attendance 19 70  Data 

1 .000 .978 
.926 .910 
.74 3 .70b 
.564 .537 
.591 .573 
.514 .545 
.475 .5 3.1 
.395 .512 
.213 .210 
.J73 . 1 39 
.073 .055 
.0 59 - 

Table   II.1£:  Fraction   in  Attendance   for   the 4   State  Model. 

— —  
i ■■  ■ '  

Semester At t emlinj; n   Consecutive At   least   n 
n Semester  n Semes ters Semesters 

1 1 .000 1.000 1.000 
2 ,914 .914 .926 
3 .709 .700 .746 
4 .628 .60 7 .669 
5 .541 .501 .601 
6 .48 3 .428 .546 
7 .414 .319 .482 
8 . 150 .261 .407 
9 .178 .088 .232 

10 .160 .06 7 .201 
11. .09 7 .017 .126 
12 .089 .011 .111 

Table 11-19:    Calculated   Fractions   for   the  5  State  Model 
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Figure 11,11:    Fraction  in Attendance;   A   Class  Model. 
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Table 11.19 gives the calculated distributions of attendance, 

consecutive attendance and elapsed time for the single vacation state 

model-  The distribution of attendance is plotted in FigureTI. 12 for 

comparison with the cohort data. 

The results for the fraction in attendance do not agree as closely 

as those obtained with the four state model.  The major discrepancy occurs 

in semesters seven and eight. Very good agreement is found in the first 

five semesters.  This characteristic is found in the distributions of 

consecutive attendance and elapsed time also, although in these two distri- 

butions the five state model naturally gives an improvement over the four 

state. 

The consistently poor agreement near the break at semester eight 

requires explanation.  Remember that we are comparing fractions calculated 

from a cross-sectional model, with fractions observed from longitudinal 

studies on students.  The cross-sectiona] data includes students who enter 

in all classes, and a feature of the modex is the assumption that a student 

who enters as, say, a junior, behaves in the same way as a student who 

entered as a freshman when he becomes a junior.  Thus the cross-sectional 

data includes numerous different cohorts superimposed at one time, and 

it is difficult (if not impossible) to identify to which cohort a student 

belongs using the available data. 

One of the rr.ain purposes for our including this example of student fore- 

casting is to motivate the types of models presented and analyzed in report 

number III.  Perhaps by keeping a little more data on an individual in addition 

to his current class, such as how long he has been in the system and what was 

his class at entry, his longitudinal behavior patterns can be used as the 

basis for a model.  As we shall see, the longitudinals models tend 
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6   7 
Semester 

13 14 

Figure 11.12: Fraction in Attendance; 5 Class Model, 



to   better   represent   actual   movement  of   indi.viduaJs   through  a   system, 

but   the  price  paid  is   in   Larger  amounts of     less   frequently available 

types  of  data. 

To  end   this  section we  include  enrollment   predictions   for  the 

years   1962-1966   for   the  Berkeley  campus by   freshmen,   Sophomores,   Juniors, 

and   Seniors,   using   the   four and   five  state models.     Actual enrollments 

are   given   for  comparison.     In  the  predictions,   new   Inputs were   taken as 

fixed and  known  and  only   the continuing portions  were  calculated.     The 

results  are  given   in   Table 11.20. 

In  order   to attempt   to measure   the suitability of each model  in 

u  simple  manner   two   typos of  errc- are  defined  and  computed  for each 

model.     We  first   compute   the absolute  error  by   taking   the absolute  value 

of   the difference  between  the actual   enrollment  and   the predicted  value 

'"or   a  given  suite   and   vr-ar   and summing over   the  states.     These  are  given 

in  Table 11.21.      Secondly,   we   find   the  mean  square   error   for  each  year 

group  in  the  usual   manner  for   ehe   four  states.     These are  given in Table 

1L.22. 

In   terms   of  absolute  error,   the   five   state  model  appears   to be 

superior   to   the   four state  model   over  short   prediction  periods.     Our 

results  show  that   for   longer  periods   the   four  state  model  gives  better 

results. 

In   terms  of   absolute  error   the   five  state  model  seems   to  be  consis- 

tently  better,   although   there   is   little  difference   in  them at   five  years. 

If enrollment predictions are  required  over one  or   two  years  in  the 

future,   it   seems   tiiat   the   five  state  mooel   ;s   the   most   desirable  one. 
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1961 1962 196 3 1964 1965 1966 

FRESHMEN 

SOPHOMORES 

JUNIORS 

SENIORS 

TOTAL 

4 STATE 

5 STATE 

ACTUAL 

4 STATE 

5 STATE 

ACTUAL 

4 STATE 

5 STATE 

ACTUAL 

4  STATE 

3 STATE 

ACTUAL 

4 STATE 

5 STATE 

ACTUAL 

3843 

3930 

3914 

3972 

3778 

3790 

3748 

3649 

4180 

394 3 

4809 

4743 

4762 

4311 

4289 

4210 

16840 

16694 

16593 

. . 

4042 3865 2986 3388 

4032 3861 2997 3428 

4106 4186 3307 3633 

3899 3875 3479 3245 

3866 3855 3480 3289 

3846 3468 3349 3126 

5049 5026 4619 4689 

4927 49 30 4529 4660 

4806 5429 5311 5624 

4859 505 3 5220 5078 

4 772 4899 5080 4949 

4789 4585 4581 4 364 

17849 17819 16304 16400 

17597 17545 16086 16326 

1754 7 17668 16548 J6747 

Table   11.20: Enrollment  Forecasts  and Actual  Enrollments,   1962-1966, 
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MC) DKL 196 2 196 3 1964 1965 1966 

' " . ... 

A   ST ATI' 24 7 302 151 244 34 7 

5   STATE 101 50 123 462 421 
        

Tabli." 11 • 2 1:      Calculated Absolute   Prrdiction  Errorj. 

MODEL 

4 STATE 

5 STAT1-; 

196 2 1963        196 1965 1966 

9 2 

70 

133 

72 

40 3 

388 

501 

49 3 

603 

579 

Table  11-22:   Calculated   Mean   Squared   Error 
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12.  A Vacancy Model. 

In previous sections we have considered stocks of manpower in 

various classes but have not specifically concerned ourselves with posi- 

tions which people fill.  In this section we consider an organizaL-uon 

where both positions and people are accounted for. 

Let x.(t)  be the number of class i positions available at time  t, 

and let  s.(t)  be the number of people in class i.  The number of vacancies 

in class i at time t is given by v.(t) = x.(t) - s.(t). 

We assume the flow of positions is governed by the simple equation 

(A3) x(t+l) = x(t) + y(t+l), 

where y.(t+l)  is the number (perhaps negative) of new class i position 

that are made available in period  t + 1.  If y.(t+l)  is positive, 

positions are added.  If negative they are removed. 

The flow of manpower in period  t + 1  is determined in large 

part by the vector of vacancies  v(t)  that exist at time  t. 

We assume that all of the v.(t)  vacancies in class i are filled 

during period t. iioreover, we assume that a fraction r.. ^ 0 of these 

vacancies are filled by individuals from class j  for j = 1,2,... .N , 

and a. ^ 0 is the fraction of vacancies filled by new appointments. 

The fractional flow assumption is 

(44) fji(t+1) = rjiVi(,:)  f0r j ^ i 

f
0i(t+l) = ai

v
i(
t) 

Since we assume all  vacancies  are  filled we  have 
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N 
y  r.. + a. = 1, 

Tne inriow of people into rank i in period  t will be 

\^)   = ( l    r jv (t) + a v (t). 

The outflow of people from class i to other classes will be; 

N 
I    r..v.(t) + f.n(t+l) 

j=l ^ J      l0 

When  these relations   are combined we  find 

i,(t+l)   =  s.(t)  + v.(t)   -    I    r..v.(t)   - f.n.t+l) 
1 1 1 ,_!        ij    J i0 

N 

1=1 

L,et h.(t+l) - f,n(t+l),  the flow out of the bystem from i  in t + 1 

and R  the matrix of elements  r,..  Then 

(45) s(t+l) = x(t) - Rv(t) - h(t+l). 

Subtracting(45) from (44) we obtain 

(46) v(t+l) = Rv(t) + h(t+l) + y(t+l). 

Equation(A6) determines the flow of vacancies in the organization.' Although 

it is possible to have y.(t+l) ^0, we assume that v.(t) ^ 0 for all 

i  and  t.  Thus we can obtain from (46) an explicit lower bound on y(t+i) , 

the change in positions in  t + 1; 
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y(t+l) £ -(Rv(t)+h(t+l)). 

Positions cannot be removed faster than this without causing negative 

elements in the vacancy vector. 

The equilibrium solution of the system given by (^6) is easily seen 

to be 

(47) v = (i-R)"1!!,   y = 0 

s = x - V . 

From (47)   we  can calculate   the  equilibrium  flows:     f.,   =  r.,v.     for     i ^  i 

and     f. .   =  s,  + v..    Thus   the  average llfetlmp   an individual  spends   in nil 0 

class   i  is  given by 

l i .!i 
i  1 - f . ./s.  v. " 

ii i   i 

The model above operates with hindsight.  We observe the vacancies 

at time  t,  and act during period (t+l)to fill the time  t  vacancies. 

These actions in turn create new vacancies at time  t + 1.  An alternate 

foresight model is possible which eliminates vacancies by planning ahead. 

Although the assumption of being unable to eliminate vacancies is unreal- 

istic, the model that we obtain is mathematically simpler, and the 

policies are more forward looking. 

Let  z.(t+l)  be the number of class i positions filled during.period 

t + 1  (recall that period t + 1  is the interval  (t,t+l]).  It follows 

."hat 

(^'^ z.(t+l) =  y  f.,(t+1). 1       --Z'  J1 
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Let r .  for j = 1,2,...,N  (j^i)  be the fraction of these positions 

that are filled by people from rank j, and let a.  be the fraction that 

are filled by new appointments. Set r  = 0.  We require that all posi- 

tions are filled.  Thus 

N 
y  r.. + a. = 1. 

J=l 

Vacant positions  in class  i during period    t + 1    are created by 

departures    h.(t+l),     addition of  new positions     y.(t+l),     and by  flow of 

individuals   in class  i  to   fill  other  positions.     The  total  number  of 

vacancies created  is 

N 
(49) h.(t+l)  + y   (t+1)  +    I    r..z.(t+l) 

1 j=l    1J  J 

If all vacancies are filled by time t+1,  then (48) and (49) 

must be equal.  In matrix notation we hav^ 

(50) z(t+l) = h(t+l) + y(t+l) + Rz(t+1). 

Equation (50) can be solved for  z  in terms of  h and  y, 

z(t+l) = (l-R/~
1(;h(t+l)+y(t+l)). 

In the steady state we obtain 

(51) z = (I-R)~Lh,   y = 0,  s = x. 

From this we can compute new appointments  f  = z.a.,  and internal 

flows f., = r,.z..  Specification of s.  allows us to compute f. . = 
ij   ij J i ^     ii 

s. - z.  and the average lifetime in class i for an individual is 
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Problem 28:    Show  that  the  equilibrium vacancy model  is   equivalent   to  an 

equilibrium Markov model     with 

q..=r..v./s.     for     i^i, 

q. .   =   (^.-1V£. , f.   = v.a.. 
xi i i ' 1 11 

Example 10: Consider a six class organization where classes 1, 2, 3 are in 

the bottom stratum, classes 4 and 5 are in the middle stratum and class 6 

the top stratum.  Let us assume 

1 2 3 4 5 6 

1 
— 

.2 , l. .15 .1 

2 .15 .1 .2 

R =  3 .05 .1 .25 .05 

4 .5 .4 

5 .4 .3 

6 
- 

a = .8 .7 .8 .2 .15 .3 

h = 17 9 13 4 5 1 

s = 400 470 375 85 90 10 

Notice from R  that one can move up in strata but not down. 

Of the vacancies created in clasr 4, for example, 15% are filled 

from class 1, 257,  from class 3, 40% from class 5 and 20% by new people. 

Nine people leave the system from class 2 each period, 13 from 3, 17 from 1, 

etc.  The system has 400 people in 1, 470 in 2, 375 in 3, etc. 

•J 



Firs'" we calculate (I-R)   which is 
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1.040 .220 .126 .311 .310 .210 

.160 1.050 .120 .183 .323 .170 

.680 .166 1.020 .371 .266 .228 

1.250 .025 .687 

.500 1.250 .575 

1.000 

From equations (A7) and (51) we see that the vectors v  (steady 

staue vacancies) and z  (steady state positions filled) are equal and 

both are given by the vector 

(18.1,15.3,18.1,8.8,8.9,1-0). 

The  average  lifetime of  an  individual   in  each class  is given  by  the 

vector 

(22.1,30.7,20.7,9.6,10.2,10.0). 
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13. More General Fractional Appointment Policies. 

In this section we consider the fractional flow model 

(52) s(t+l)   =   (Q+A)s(t). 

We  assume     A k 0,     and    e(Q+A)   =  e.     In   this  model   the  appointment  policy 

is 

(53) f(t+l)   = AsCt), 

which  is  a  linear  function of  the current  stocks  of manpower.     By assuming 

A ^ 0,    we  have   insured  that    f(t)   S 0.     Also   the  system will   stay of 

constant  size   since 

es(t+l)  =  e(Q+A)s(t)   =  es(t). 

It   is  apparent   that    w     must  equal     eA.     We  can  interpret    a../w. 
ij       J 

as   the  fraction  of  departures  in  class     j     that  are  replaced by  appoint- 

ments   in  class     i.    This     type of  appointment  policy is  clearly more 

flexible   than   the policy presented  in section 4 where    a..   = a.w.      for 

all     i    and     j . 

The   equilibrium version of  equation (32) is 

(5/4) s  =   (Q+A)s,       f   = As. 

The question arises, JS it possible to obtain equilibrium solutions 

of (54) than are not possible when we restrict  a..  to the form a-jW-s 
ij i J 

rN 
with I aT = 1 ? The answer is no as we now show. 

j = l  J 

Let  s  and  f  be any equilibrium solution of (34); then let 

(33) a = As/ ws , 
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Clearly ea =  eAs/ ws 

and As 
(Q+a.w)s = Qs  H ws    = s. 

ws 

As 
However,   if we  use  the fractional  appointment policy    a = —    for     s(0)   ^ s, 

ws 

then the path to equilibrium using this appointment policy will in general 

differ from the path taken using appointment policy A. 

Problem 29: Suppose we require  (Q+A) ^ 0,  -and e(Q+A) = e;  but allow 

elements of A  to be negative.  Examine and interpret this model. 

Example 11 : Consider a university faculty consisting of the following 15 

classes of manpower. 

Class Description 

1 Nontenure 
2 Tenure - Age 30 to 34 
J Tenure - Age 35 to 39 
4 Tenure - Age 40 to 44 
5 Tenure - Age 45 to 49 
6 Tenure - Age 50 to 54 
7 Tenure - Age 55 to 58, Low Salary 
8 Tenure - Age 59 to 61, Low Salary 
9 Tenure - Age 62 to 64, Low Salary 

10 Tenure - Age 55 to 58, Medium Salary 
11 Tenure - Age 59 to 61, Medium Salary 
12 Tenure - Age 62 to 64, Medium Salary 
13 Tenure - Age 55 to 58, High Salary 
14 Tenure - Age 59 to 61, H'.gh Salary 
15 Tenure - Age 62 to 64, High Salary 

The transition matrix is given in TaileTf.23and shows the estimated 

fractional flows when an early retirement system has been instituted. 

We have broken the departure class (0) into three separate classes, 

early retirement (16), normal retirement (17), and others (18). 

The departure fraction w.  is the sum of the last three numbers 
i 

in column i.  Hefore, the early retirement program was instituted the 

fractional appointment vector  a was given by 
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Class    1   2 3    4    5   6   7 8 9  10 11 12  13  14  15 

a     .8  .028  .044  .044  .036  .01 0 0 0  0  0  0  .01  .028  0 

Under the early retirement policy, all new appointments that arise 

from early retirements will be filled by nontenure appointments. 

For each class i let r. = q,, .  be the fraction that retire early, 
i 16 ,i 

and  let    w.     be   the  fraction that  left   the  system before  the early 

retirement   plan    w.   =  q + q        ..     In  other words we assume   that 
i 1 /, i        1 o , i 

w.   =  r.   + w. . 
ill 

Now define    b.   =   | |     and   the  matrix    A    by 
1 0    otherwise 

(56) a. .   = b.r.   +  a.w. 

A portion of   the  appointment matrix  is  presented  below along with   the 

equilibrium  solution of (54) with    X  =  413   (total   faculty  in system). 

Equilibrium Solution 

1 2       3       4      5      6     7    d     9     10     11     12    13    14     15 

column 

s     141     23    47     47    50    46     9     3     2       9       5       2    12      9 8 

The non  zero  elements of   the   first   and  ninth  colimns of A    are 

i iiown. 

rows 

1              2               3              4                5               6               13 14 

1       0.12       .0042       .0066       .0066       .0054       .0015       .0015 .0042 

9 .556     .0034       .0053      .0053       .0043       .0012       .0012       .0034 

Note   that  column  9  is  not  proportional   to  column 1. 



90 

IN 

O 

CN 

CO ^3 
O c o 

r- CN 

04 

»-<       X        n        (N        t^ 
1^       <r        o       O • • •      o 

v 
u 
a 
u 
m 

00        00        tN 
o        CN        o 

0 
04 
0 

• • 

T—1 

O 0 
* • 

CN 
O • ■ • 

r-- 
0 

* • 

O 
CN 
O 

• ' 

c^ 
0 O 

• • • 

CN 0 
• • 

0 O • 

04 
O 

o 

o 

CN 
o 

LO 

.J 
a 
Q 
O 

H 
v; 
W 

2 
H 

< 

OS 
O 

o 

H 
U 

fa 

(N 

<; 



liPpip|i*iMPML!^ 

91 

The equivalent simp.1.e appointment policy is given by a -  As/ws. 

7 9 10 11 12  13   14  15 

a 0.83  .024  .037  .037  .03  .008 0 0 0  0  0  0  .008  .024 

From an initial value of s(0), given below, we  projected s(t) 

for five periods using first the appointment policy A (56),then using 

a above. The values of s.. (t)  are shown below 

Period 

0     12     3     4     5 

Policy A   137   144   146   147   146   145 

Policy a   137   143   145   146   145   144 

mmmmtomimm ililiiaiiigiiiiiiiilii mum 
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14* Evolution of Fixed Size Systems. 

This section examines the fractional flow model 

(57) s(t) = Q s(t-l) + f(t), f(t) * 0  t > 1 

given  s(0) i 0,  s(0)e = A. 

We make four assumptions about this system: 

(i) Q ^ 0 

(ii) w = e-eQ>0 

(iii) (I-Q)  has a nonnegative inverse, 

(iv) s(t)e = X for all t. 

Items (i) and (ii) simply identify a fractional flow model. Assumption (iii) 

is equivalent to Q ->- 0.  Thus the legacy of any initial stock levels s(0) 

becomes negligible in the distant future.  The final assumption (iv), of 

constant size, places a limitation on the appointment vector f(t).  Summing 

the vectors in (57), 

es(t) = eQs(t-l) + ef(t) = es(t-l) - ws(t-l) + ef(t). 

Thus to preserve constant size 

(58) ef(t) = ws(t-l). 

Equation (58) simply says the number of new appointments in t must equal 

the number of departures in (t-1). 

We can normalize the problem by defining 

z(t) = s(t)/A, h(t) = f(t)/A . 

ai^aMteh^iii#W»itt;i^^ üi ifflwiwMiiiifii^^ 
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Then (57) and (58) become 

(59) 

Define 

(60) 

z(t) = Qz(t-l) + h(t), 

eh(t) = wz(t-l), 

h(t) > 0 , t = 1,2,.. ., 

z(0) given, ez(0) = 1,  z(0) 2 0. 

S = {z|ez = 1, z i 0} . 

S is ehe set of all distributions of manpower in the N classes.  The 

constraints in (59) require that z(t) e S for all  t,  using S we can 

write (59) in an alternate manner; given any sequence {z(t), h(t)} that 

satisfies (59) define a(t)  as 

z(t-l) if wz(t-l) = 0,1 

(61) a(t) t)=( 
h(t) 

wz(t-l) otherwise. 

Notice that a(t)   S for all til, and that 

(62) 

or 

z(t) = (Q + a(t)-w) z(t-l) 

z(t) = P[a(t)] z(t-l) , 

where P[a(t)]  is the stochastic matrix Q + a(t)'w with elements 

V     [a{t)]  = qi. + a.(t)w..  Alternately,  z(0) e S and a sequence 

a(t) f S, til,  determines a solution z(t) e S of (62); by defining 

h(t) = a(t)•wz(t-l), we can then construct a solution of (59). 

jfrriiTrmiMWi^iJiialimWiifiiM 
■,-,..>■.■ ,-..■. 
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Su) = Q's(t-l) + f(t), f(t) > 0 

s(t)e = 0 A 1,2, 

and s(0)e - As(0) > 0.  How and under what conditions can we convert this 

into the form of (59), and still satisfy requirements (i) - (iv)? 

Let z be a distribution of manpower at any time.  An interesting 

set of points to examine, is all points in  S that can be reached from z 

in a single time period.  We define this set to be 

D 

(63) R(z) = {y|y ;> Qz, y f S} . 

R(z)  is the set of all points that can be reached iirom z in one period. 

To determine the set of points that can be reached in two periods, we must 

generalize our notion of R.  Let A be any nonempty subset of  S,  and 

define 

(64) R(A) = {y|y > Qz, z e A, y e S} 

R(A)  is the set of all points that can be reached in one step from some 

point in A,  It follows that 

(65) 

Now define 

(66) 

R(A) =  U  R(z) . 
z f A 

R0(A) = A 

RV) = R(A) 

Rt(A) = RfR(t"'1)(A)],  t > 2 

il^>:.w.£toti,^i>»Aäu.^»K^«^^^ 



ii>vwvAmm^>w^^mwmm»y-' IWppiWPiip^Pif^-^^^^ 

95 

It follows that R (A) is the set of all points that can be reached in t 

periods starting from some z e A.  When A consists of a single point 

z,  then we write R (z). 

The analysis that follows is motivated by the following problem: 

given an initial distribution z(0)  can we reach a desired distribution y 

in a finite number of steps? Moreover, when we reach y is it possible to 

remain at y or return to y?  The easy question, can we remain at y,  wilx 

be treated first. We can only give a partial answer to the questions, can we 

move from z(0) to y, and can we retirn to y. We give an operational 

characterization of the set E of maintainable or equilibrium distributions. 

If y e E,  then it is possible to remain at y. 

We also describe a set L of limiting distributions.  If y is in 

the interior of L then, for any z(0),  it is possible to move to y in 

a finite number of steps, and it is obviously possible to return to y from 

y in a finite number of steps.  However, given any y it is difficult to 

determine if y e L.  Thus, the characterization of L is not as operational 

as the characterizations of the set E. 

Example 11: Given Q, z(0), y below 

Q = 

8 33 i 

1 .95 z(0)  = 34 y = 0 

.02 .9 33 0 

it  is not possible  to reach    y    from    z(0),     since    z   (t)   >  0    for all    t. 

mmmmmäum vM^tmiimtfmmmmmMmmmmmmm^ i mtttm 
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Clearly, it is possible to remain at y if and only if y e R(y), or 

y e  {z|z z  Qy, 2 e S}. 

This will be true if and only if  y ^ Qy.  Let us define the equilibrium 

set E as the set of distributions that can be repeated 

(67) E = {y|y f R(y), y e S] = {y|y >.  Qy, y e   S] 

It follows that y e R (y)  for all t,  thus it is possible to remain at y 

indefinitely. There is another way to describe the set E.  Recall that 

D = (I-Q)-1. Then 

(68) E = {y|y = Dh, y e S, h > 01 

To see this, note that if y = Dh and h > 0,  then  (I-Q)y = h ^ 0 and 

y e E.  Also, if y e E,  then define h = (I-Q)y z  0,  and note that y = Dh. 

For y c  E,  define h(y) = (I-Q)y, a(y) = (I-Q)y/wy,  and P[a(y)] = 

Q + a(y)-w.  Then we obtain 

(69) P[a(y)]y = y . 

If h(y) > 0,  then for any initial distribution z(0)  we obtain 

(70) Pl-[a(y)] Z(0) -> y . 

Problem 31:  Prove 

(i)  If  y e E,  then wy > 0 

(ii) There is a y e E,  such that y > Qy. 

(ili)  If y >  Qy,  then P[a(y)]  is a regular Markov matrix. 

■:v.fVjM.-:fti,-tfMfa:rM^^ 
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Problem 32: Construct an example where y e E, but y > Qy is not 

true, and P [a(y)] z(0)  does not converge (or come close to y). 
D 

We now turn to the long range behavior of the system (59). Let 

A and  B be subsets of  S.  If A => B,  then R(A) => R(B) .  This is 

reasonable, since it tells us that if you can go to  y  from z e B,  then 

you can certainly reach y  from z t B c A.  Notice that  R(E) ;> E.  This 

is true because y e E implies y e R(y). Now consider the inclusions 

(i)  R(E) = E 

(ii)  S => E 

(iii)  S => R(S) 

and repeatedly apply R.  We obtain 

(71)     S = Rt(S) -> Rt+1(S)   = Rt+1(E) 3 Rt(E) => E  for all  t i 0. 

Since  R (S)  is a contracting sequence of sets we can define 

CO 

(72) L =  n  R^S) . 
t = 0 

It is evident that L  is nonempty since L ^ E,  and it is not too difficult 

to show that R(L) = L. 

Problem 33:  Prove R(L) = L. 

This result can be carried one step further when we make the 

additional assumption that  w > 0. 

Theorem:  If w > 0,  then L  is the unique closed set that satisfies 

R(B) = B.  Moreover, if  A is any closed subset of  S,  then R (A) ->■ L 

geometrically. 

D 
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The theorem is proved in Grinold and Stanford [1973]. Notice that the 

set L has several remarkable properties.  First, if z(0) e L, then 

z(t) e L for all t.  Once the system enters L it cannot leave. 

Consider the problem of moving from z(0) e S  to y.  If y is in 

the interior of L,  then there is a t* such that for t > t*^y e R (z(0)). 

In particular if we take z(0) = y, then one can return in a finite number 

of steps to any y in the interior of L. Thus any z(0) e S can reach y 

in a finite number of steps.  In contrast, suppose y ^ L.  Take z(0) e E, 

then for each t 

y l^ L 3 R^E) 3 R^zCO)), 

It  is not possible to reach    y    from    z(0).    Moreover,   if    y ^ L,     then 

t 'n the  system cannot return to    y.     A return would  imply    y e R       (y)     for 

n =  1,2,...   .     However,   R   *   (y)  ->- L,     and    y i L.    This contradiction shows 

we  cannot  return to   any     y / L. 

In general  it  is not possible  to obtain a characterization of    L. 

The  question,  "is    y    in    L"    cannot  be precisely answered.     However, 

E c  L     is  explicitly known.     If  a    z   e L     is  found  such that     y e  R  (z) 

for  some     t,     then    y  e L. 

Example 12: When n = 3,  it is possible to depict the set E. 

Suppose 

r 

Q = 

^i 

^21 i22 

q32 q33 

■■^^.<J.A^--\^. 
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and w > 0. For Q In this form it is straightforward to show that 

1 
(q2lV 

q21 1 

D = 
(q214vl)(%2"K72)    (q32^2) 

q21 q32 l32 
(q21-fv1)(q32^2)w3   (q32+v2)w3   W3 

Now let  y(k)  be the point in  E which corresponds to the stationary policy 

of making all appointments into class k,  k = 1,2,3,.  The three points 

y(l), y(2), and y(3) form the extreme points of the set E and are given 

by (using (68)) 

yd) = 

q32-h.2)w3/K1 

q21w3/K1 

q2iq32/Kl 

w3/K2 

q32/K2 

73= 0 

where ^ = (q324v2)w3 + (<l2|2'Hl3S>q21,     and  K2 = q32 + W3' 

Using the values of Q in example 11,  K = 0.017, K = 0.12 and the 

extreme points of E are 

y(l) 

0.294 

0.588 

0.118 

y(2) = 

0 

0.833 

0.167 

y(3) 

0 

0 

1.0 

The sets S, E, R(z) and R (z) for z = ['S,-!,-!] are illustrated in Figure 

11.13. 

iifii 111 ffi-iiiiiiiiitiiiiim mmm Hggtiitt 



mmmmmmmmmmmmmz wm^w^MWß. 

100 

(0,1,0) 

(1,0,0) 

Figure 11.13:  Illustration of Sets  S, E, R(z) and R (z) for the 3-class 
System in Examplo 11. 
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15.  Notes and Coimnents. 

The fractional flov; model has been discussed in numerous papers 

in the literature, but almost all discussions have been in the context of 

a Marko  chain.  An extensive bibliography can be found in Bartholomew [1973], 

pages 381-402. 

The hindsight and foresight models discussed in sections 3 and 4 

correspond to "closed" systems as defined in Bartholomew [1973] with 

(N+l)  and N states respectively.  The matrix theory referred to in 

section 6 can be found in numerous places including Debreu and Herstein 

[1953 ]. Section 8 is essentially taken from Branchflower [1970].  The reader 

interested in pursuing the probabilistic interpretation should consult 

Bartholomew [1973] and Kemeny and Snell [I960]. 

The data and some of the ideas in section 10 are taken from 

Hopkins [1974].  The early retirement scheme suggested in this section has 

been used on a trial basis at Stanford University.  Section 11 is based 

on a report by Marshall, Oliver and Suslow [1970], and in some sense shows 

the limitations of the cross-sectional model.  A close look at the data 

in this section is the motivation for the longitudinal models discussed 

in the next report.  The vacancy model in section 12 was formulated by 

White [1970]. These models have been used to forecast flow in several 

strict hierarchies. 

Sections 13 and 14 are more advanced and are intended for those 

readers more familiar with matrix theory and Markov chain theory.  Section 

13 owes a great deal to privateconversations with Robert Stanford.  Section 

14 considers the questionof long-run evolution, which has been investigated 

by Bartholomew [1969],  Armacost [1970], Toole [1971], Davies [1973] and 

Grinold and Stanford [1973]. 
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Included in the bibliography are examples which demonstrate the 

many applications of cross-sectional models in manpower. Young and Almond 

Rowland and Sovereign, and Vroom and MacCrinmon have applied the model to 

the distribution of staff and management in an organization. Blumen 

Kogan and McCarthy have applied it to Labor Mobility.  Thonstad has used 

it as the basis of models for national education and manpower planning as 

did Armitage, Smith and Alper.  Clough and McReynolds, and Marshall, Oliver 

and Suslow have applied it to student enrollment forecasting in higher 

education.  Charnes, Copper and Niehaus use it as a basis of their models 

for planning the civilian manpower in the U.S. Department of the Navy. 

The report by the Naval Personnel Research Lab [1973] gr'.ves a summary 

of numerous manpower planning models used in the U.S. Armed Forces (with 

emphasis on the Navy). The basis of many of these models, though often 

not explicitly stated, is the cross-sectional model with its fractional 

flow assumptions.  Finally, the proceedings of two NATO conferences on 

Manpower Planning are available in Smith [1971] and Wilson [1969]. 
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